Farm Landscape Design Decision Support

Veronika Vazhnik,

ni.gov

Idaho National

Laboratory

Graduate Fellow, Idaho National Laboratory and Pennsylvania State University

Landscape Design Project meeting May 21st 2020

Research motivation and goal

Support farmer decisions for sustainable landscape designs to meet their priorities using:

- Stakeholder engagement
- Sustainability assessment
- Spatial analysis and optimization

The problem

• Current agricultural **field configurations** (placing annual crop on the entire fields) lead to economic loss and environmental degradation

6-Year Average Net Profit (\$/ha)

(Bonner et.al. 2014)

Eutrophication

Optimization inputs – expert elicitation

- Farmer interviews, February 2019
	- 37 interviews (46 farmers) across Iowa
	- 18 key priorities across groups used for the analysis
- Follow-up interviews, November 2019
	- 15 interviews
	- Review of indicators, time and space considerations

Priorities

Addressing the 'Profitability' priority

- Stakeholder interviews point to **profitability** as one of the top producer priorities
- Can perennial grasses make an **economic case** on productive Iowa land?

6-Year Average Net Profit (\$/ha)

(Bonner et.al. 2014) $\overline{7}$

Profitability assessment

Sentinel-2A

Landsat 8

Imagery Processing

Google Earth Engine

1. Calculate peak NDVI and convert into yield

 $Yield = Coefficient \times e^{3.3525 \times NDVI}$ $NDVI =$ NIR – Red $NIR + Red$

(Teal et al. 2006)

2. Calculate profit based on crop budgets

Yield variability for switchgrass and maize

Yield

Profitability calculation

 $Profit_{corn} = (Y_{grain} \times P_{grain} - C_{grain}) + (Y_{stover} \times P_{biomass} - C_{stover})$ +Grain Subsidy - Land Rent

 $Profit_{switchgrass} = (Y_{switchgrass} \times P_{biomass} - C_{grain}) - Land Rent$

$$
P_{biomass} = \begin{cases} 50, & Low value market scenario \left(\frac{\$}{Mg}\right) \\ 100, & Average value market scenario \left(\frac{\$}{Mg}\right) \\ 150, & High value market scenario \left(\frac{\$}{Mg}\right) \end{cases}
$$

Profitability results

Example run of maize profitability analysis for 2013 (grain with stover harvest at \$150/Mg price scenario, without adding switchgrass) including land rent and with grain subsidy

Average profitability (among harvest scenarios and years)

Profitability on the fields in North Raccoon and South Fork watersheds between years 2013 and 2018 (excludes rental payment and includes maize subsidy).

\$1,282/ha

Note: The reason that the highest average of the maize profit is higher than for the integrated case is because in that case, the stover biomass price was set at \$150/Mg; while in the \$50/Mg integrated case, all biomass price is at \$50/Mg.

Spatial analysis framework

- Subfield-level detail of analysis
	- **Stakeholder-informed decision variables**
	- **Sustainability** assessment
	- **Utility** values to represent sustainability indicators
	- **Spatial** suitability assessment using bit-wise comparison and optimization

Spatial data processing

Farm boundaries **Bit-wise comparison:**

Smoothing

Field efficiency calculations based on (Griffel et al. 2020)

Crop suitability maps (2-pixel smoothing)

Financial stability– 0.5 Profitability – 0.25 Yield – 0.25 **Weight** Profitability – 0.42 Yield – 0.21 Soil quality – 0.11 5 0 Erosion potential – 0.11 Water quality – 0.05 \blacksquare Positive image – 0.05 \blacksquare Inheritability – 0.05

Total utility: 5676 Subfields: 3 Field efficiency: 70%

Total utility: 4163 Subfields: 9 Field efficiency: 59.4%

Crop suitability maps (2-pixel smoothing)

Profitability – 0.15 Soil quality – 0.15 Diversification – 0.11 Inheritability – 0.09 Independence - 0.08 **Weight** Financial stability – 0.08 Water quality – 0.08 Erosion potential – 0.08 Food production – 0.08 $Yield - 0.06$ Wildlife – 0.05 \blacksquare

employ

Total utility: 4605 Subfields: 5 Field efficiency: 87.1%

Total utility: 5117 Subfields: 1 Field efficiency: 98%

Key contributions and future work

Acknowledgements

- I would like to thank the colleagues at Penn State, INL, ORNL, Iowa State, USDA, Antares Group Inc. for their feedback and support!
- This work was possible thanks for the time and input from 46 agricultural producers in Iowa.
- The funding for this work was provided through U.S. Department of Energy grant under the award number DE-EE0007088 and under the DOE Idaho Operations Office Contract DE-AC07-05ID14517. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.

Idaho National Laboratory

21

Additional slides

Priorities

Profitability 36/37 interviews. Weight between **16** and **27**%

Water quality **30/37** interviews. Weight between **6** and **12**%

Soil quality **29/37** interviews. Weight between **7** and **12**%

Soil erosion **28/37** interviews. Weight between **4** and **13**%

Wildlife and nature proximity **28/37** interviews. Weight between **3** and **6**%

Priorities

Independence **29/37** interviews. Weight between **2** and **3**%

Good image of practices **19/37** interviews. Weight between **0** and **2**%

Opportunities for young farmers **19/37** interviews. Weight between **2** and **8**%

Rural development **11/37** interviews. Weight **0** and **2**%

Lifestyle 7/37 interviews. Weight between **3** and **10**%

Corn stover harvest

•
$$
Y_{stover} = 0.714 \times Y_{grain} - 5
$$

Wilhelm et al. (2007)

• $Y_{stover} = 0.61 \times Y_{grain} + 2.4 - Min. Stover Remain$ Tan and Liu (2015) ; Johnson et al. 2016

• Harvesting cost at \$100/Mg Thompson and Tyner (2014)