
The Pennsylvania State University 

 

The Graduate School 

 

 

FARM LANDSCAPE DESIGN DECISION SUPPORT TO INCREASE ECONOMIC, 

ENVIRONMENTAL AND SOCIAL BENEFITS USING STAKEHOLDER 

ENGAGEMENT, SUSTAINABILITY ASSESSMENT AND SPATIAL ANALYSIS 

A Dissertation in 

 

BioRenewable Systems 

 

by 

 

Veronika Vazhnik 

 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

May 2020 

 



ii 

 

The dissertation of Veronika Vazhnik was reviewed and approved* by the following: 

 

Tom L. Richard 

Professor of Agricultural and Biological Engineering 

Dissertation Advisor 

Chair of Committee 

 

Christine Costello 

Assistant Professor of Agricultural and Biological Engineering 

 

 

Clare Hinrichs 

Professor of Rural Sociology 

 

Erica Smithwick 

E. Willard and Ruby S. Miller Professor of Geography 

 

 

 

Saurabh Bansal 

Assistant Professor of Supply Chain Management 

 

 

Jason Hansen 

Research Economist at Idaho National Laboratory 

Special Member 

 

Paul Heinemann  

Professor of Agricultural and Biological Engineering 

Head of the Department of Agricultural and Biological Engineering 

 



iii 

 

ABSTRACT 

Sustainable agriculture is essential for improving rural economies and remediating 

environmental challenges like air, water, and soil pollution. Perennial bioenergy grasses can be 

one of the approaches to improve water and soil quality and increase farmer profits on lower-

yielding parts of the land. The challenge that this dissertation tackles is to identify where in a field 

or a landscape might perennial grasses best meet producer priorities and needs, in the context of 

fluctuating market prices for agricultural commodities and biomass, policy uncertainty, and the 

changing nature of US Midwest agriculture. The approaches that this dissertation takes to 

supporting the landscape design decisions include an agricultural sustainability assessment based 

on stakeholder engagement, economic and market analysis of perennial biomass and annual 

commodity crops, and generation of a landscape layout using spatial data analysis based on a 

range of sustainability indicators.  

 

Agricultural sustainability and its indicators for assessment can be defined differently by 

different stakeholders, which is why this dissertation first studies what sustainability indicators 

matter most to agricultural producers and how they prioritize those indicators for further decision-

making. The results suggest that producers have diverse priorities including profitability, soil 

quality, water quality, positive image, independence, financial stability and many more. 

Furthermore, the research shows that all producers consider multiple time horizons and spatial 

boundaries, that these boundaries vary depending on the sustainability indicators and stakeholder 

type, and that the different indicators need to be modeled at the varying space and time 

boundaries relevant to each specific indicator and stakeholder type. 
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One of the primary sustainability indicators that agricultural producers in this dissertation 

prioritize is profitability. To inform their decisions around incorporating perennial grasses into 

the landscape, this dissertation assesses whether and where there may be a business case for 

perennial grasses relative to the status-quo of annual crops like maize. To make that comparison, 

this study identifies and evaluates several biomass markets that either currently exist or will 

become available in the future, estimates the biomass prices associated with those markets, and 

uses published yield estimates and perennial crop production budgets for switchgrass to estimate 

the possible biomass profit. For annual crops, the study evaluates the historic profitability of corn 

using yield estimates based on high-resolution remote sensing imagery, and historic crop budgets, 

market prices, and subsidies. That analysis is carried out on two example watersheds in some of 

the most productive maize cropland in the world – the headwaters of the North Raccoon River 

watershed located in Buena Vista county, Iowa, and the South Fork River watershed located in 

Hardin county, Iowa. The results indicate that perennial grasses can be more financially viable on 

as much as 80% of productive Iowa land with biomass prices of $150/Mg assuming a high 

switchgrass yield of 10 Mg/ha, or over 25% of land if a low switchgrass yield is assumed of 5 

Mg/ha. If the low price of $50/Mg is assumed, between 6% and 22% of land depending on the 

watershed and the scenario could be profitably converted to switchgrass. The fact that perennial 

grasses can be more profitable than maize on highly yielding Iowa cropland even with low-

paying biomass markets suggests that biomass production can scale up to supply large-scale 

markets like biorefineries even if those markets are highly uncertain. 

     

Profitability is an important factor, but not the only one that impacts the decision-making 

process. As illustrated through producer interviews, stakeholders consider a multitude of 

priorities when designing their landscapes. In this study, a framework is developed that can help 
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design farm landscape plans according to those diverse priorities, with a range of outcomes 

estimated and evaluated through a sustainability assessment. The framework incorporates 

individual producer values, goals and preferences as the user selects priorities that matter most to 

them, assigns them a utility score, and weights them according to the level of priority that best 

describes the value of that indicator to the decision-maker. To demonstrate how that framework 

can be applied, a decision support tool was developed to optimize farm plans for prioritized 

sustainability objectives. Based on the stakeholder input and historical or modeled spatial data, 

the tool generates raster map layouts suggesting where to plant switchgrass or maize/soybeans 

and uses a smoothing algorithm to improve the operability of the farm layout. The selected model 

runs illustrate that with transitioning from economic-only to diversified priorities, the farm 

landscape transforms to include a higher percentage of perennial grasses. Overall, this dissertation 

fills a knowledge gap about producer priorities for sustainable bioenergy systems and 

demonstrates techniques that integrate stakeholder engagement and spatial data processing to 

inform perennial bioenergy crop decision-making. 
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Programming sticks upon the shoals 

Of incommensurate multiple goals, 

And where the tops are no one knows 

When all our peaks become plateaus  

The top is anything we think 

When measuring makes the mountain shrink. 

 

The upshot is, we cannot tailor 

Policy by a single scalar, 

Unless we know the priceless price 

Of Honor, Justice, Pride, and Vice. 

This means a crisis is arising 

For simple-minded maximizing. 

 

 MD Mesarovic, 1964. Views on General Systems Theory



 

 

Chapter 1 

 

Introduction 

Agricultural status quo and the opportunity for herbaceous biomass 

Corn and soybean farms in the US Midwest are a significant source of feed for animal 

farms and feedstock for first generation bioenergy plants across the U.S. and globe. However, 

these millions of acres of annual crops have also resulted in severe environmental pollution due to 

soil erosion and nutrient runoff, leading to algal blooms and eutrophication (Vitousek et al. 1997, 

Tilman et al. 2002, Hladik et al. 2014). Over time, this water and soil degradation can lead to 

social problems because of the loss of workable land and little space for innovation and 

profitability for future generations. Without significant action, agricultural pollution problems 

will increase with time (Sinha et al. 2017). As climate change impacts intensify, precipitation 

patterns will be changing and will lead to more nutrient runoff from the fields as well as greater 

stress on sensitive cropland from both floods and drought. Sinha et al. (2017) indicate that rivers 

in the US Midwest will receive nearly 28 percent more nitrogen the end of the 21st century if 

agricultural practices do not change. Such projections increase the need to take rapid action in 

adopting sustainable agricultural practices. Conventional management practices used in US 

agriculture function on a scale too large to ensure the most efficient use of the resources, as they 

fail to address field heterogeneity. High-resolution subfield farm planning can be used to suggest 

sustainable intensification options like placing perennial grasses in parts of the field to reduce the 

field nutrient runoff and establish wildlife habitat. These practices can help manage the economic, 

social and environmental challenges of both sustainable agriculture and sustainable bioenergy 



2 

 

systems and provide a new approach for managing the land to reach its full economic and 

environmental potential.   

 

Perennial grasses can help overcome a range of environmental challenges (Dale et al., 

2014). For example, buffer strips have been shown to reduce nutrient runoff from fields, 

especially when these strips were placed downslope from row crops (Heathwaite et al. 2006; 

Zhou et al. 2010). Zhou et al. (2010) illustrated that strategic transitioning of even ten percent of 

farmland to perennial vegetative buffers decreased nutrient runoff, while Asbjornsen et al. (2014) 

pointed out that perennial buffers help also maintain soil, stream and groundwater levels during 

drought, the can also prevent floods, increase field biodiversity to aid in pest control, and increase 

pollination. Furthermore, perennial plant buffers capture carbon, thus reducing the greenhouse 

gas (GHG) footprint of the farming operation and sequestering atmospheric CO2 as soil carbon 

(Zan et al. 2001).  

 

Even when the environmental benefits of perennial biomass-based production are 

demonstrated, critics argue against such environmentally-friendly agricultural practices due to the 

cost of production and lost productivity. There is a widespread assumption that floodplain soils 

are highly profitable, and that farmers will lose the opportunity to make a profit from the 

seemingly productive land. Contrary to this assumption, emerging research indicates that many 

subfield areas (small parts of the fields conceptualized as separate units for economic, 

environmental or social analysis of farms) of fields are unprofitable, especially in low valleys 

during flooding and on steep hillslopes during drought. Bonner et al. (2014) illustrated the low 

profitability of maize across many subfields, even on fertile soils in Hardin County Iowa at 

typical grain prices (Figure 1-1). Based on multi-year average prices, conventional farm 

operations on this land would hardly sustain farmers’ livelihoods had there been no subsidies or 
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insurance on crop loss. These losses on parts of fields have become quantifiable because of 

satellite data, precision agriculture tools, and GPS-tracking of agricultural machinery. Thus, with 

the correct software, a farmer could see that they might be losing money from parts of fields and 

take corrective action, which may include planting perennials. Since the net revenue farmers 

receive for growing soybeans and maize has not been financially attractive for several years, 

farmers may be more open to changing to their practices and evaluating biomass or other 

perennial crop production.   

Contrary to the common assumption that sustainable farming practices require public or 

private investment without providing a return (Babcock et al. 2007, Motallebi et al. 2016, 

O’Connell et al. 2017), some companies and farmers have proposed and, in some cases, 

demonstrated ways to create commercial products from crops grown for environmental 

remediation. For example, studies like the report from National Renewable Energy Laboratory 

(Biddy et al. 2016) suggest that there is a myriad of uses for biomass. As these technologies 

 

 

Figure 1-1:    Subfield economic analysis of land profitability depending on the market grain price 

(Bonner et al. 2014). 
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mature and commercialize, perennial grasses could help supply these new markets and generate 

jobs across the region wherever the perennial crops are grown and processed. Perennial grasses 

and the bioenergy and bio-based products that can be made from those grasses create an 

environmentally friendlier alternative to the resource-intensive status quo (Georgescu et al. 2011, 

McLaughlin and Walsh 1998). These products are of interest to multiple stakeholders, including 

farmers, bioenergy industry representatives, environmental organizations, and consumers, and 

offer environmentally friendly energy and materials from renewable sources. To verify the 

benefits of biomass-based systems, sustainability or life-cycle assessments are required, and these 

assessments can be challenging because of the different concerns and interests of the stakeholders 

involved.   

Sustainability assessment and optimization in agriculture 

The term ‘sustainability’ became widespread in international policy language in the late 

20th century with the discussions of society’s environmental footprint (Kidd 1992, Caradonna 

2014). Many common definitions of sustainability are derived from the “Brundtland” report 

(Brundtland et al. 1987), stating that sustainability is an approach to development that does not 

limit the resources and choices of future generations but still satisfies the needs of the present 

population. This definition of sustainability can be directly applied to farming by inserting the 

term “agricultural practices” instead of “development.” This definition of agricultural 

sustainability can help conceptualize and evaluate multifunctional and productive agriculture 

systems. Hansen (1996) suggested that the most useful way to define sustainable agriculture is 

“agriculture that can continue”, meaning that sustainable agricultural is such set of practices that 

conserves soil, water, nutrients, economic resources, social fabric and other relevant resources for 

the future generations.   
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 Most definitions of sustainability consider environmental, economic, and social 

dimensions. These three dimensions of sustainability were termed the “triple bottom line” by 

Elkington (1994) and have also been called the three “P”s: People, Planet, and Profit.  Most 

agricultural enterprises, whether biofuel producers or small-scale farmers, depend on the profit 

from their activities to be sustainable. In addition, environmental and socio-cultural factors need 

to be considered to ensure system resilience to resource shortages or market and weather 

fluctuations. Sustainability assessments can help conceptualize the three categories of 

sustainability in a measurable way.    

 

Sustainability assessment is one technique used to compare agricultural landscape design 

scenarios. Evaluating indicator outcomes from multiple scenarios or optimized solutions can help 

identify a design that performs best according to an agricultural producer’s priorities but does not 

limit the opportunities of surrounding communities and future generations for work and 

recreation. The popularity of sustainability assessment is increasing as more and more 

organizations choose to evaluate the performance of systems using indicators and measures that 

include but are not exclusively financial. Singh et al. (2009) reviewed the different techniques 

international organizations, academics, and research societies have used to evaluate sustainability, 

and discuss the wide range of tools that have been used. Sustainability and life-cycle assessment 

techniques and studies are diverse and are often not comparable because of different indicators, 

assumptions, and base cases (Ness et al. 2007, Cherubini and Stromman 2011). The goal of this 

section is not to detail all the techniques that can be used in sustainability assessment, but instead 

to highlight those most useful in agriculture and bioenergy research.  

 

Sustainability assessments normally reflect the three dimensions embedded in the 

definitions of sustainability: economic, environmental, and social.  Usually such assessments are 
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multidimensional and consider indicators across the triple bottom line. Useful assessments are 

usually characterized as holistic and transdisciplinary, providing feedback and explaining 

uncertainty to stakeholders including decision-makers (Sala et al. 2015). Furthermore, 

sustainability assessment is an integrated assessment that reflects the nature-society relation, 

impact across spatial levels, and short- and long-term timeframes (Ness et al. 2007).  Because 

agriculture is a coupled human-natural system, the appropriate assessment should be conscious of 

the value judgment that it is carrying (Gasparatos and Scolobig 2012). For agricultural decision-

making purposes, such diverse characteristics of sustainability assessment can be summarized as 

interdisciplinary and informed by stakeholder opinion, as well as measurable and reflective of 

diverse spatial and temporal boundaries (Marchand et al. 2014). 

 

Sustainability indicators can represent the decision variables for agricultural production 

and bioenergy crop sustainability, and are the foundation upon which sustainability assessments 

are built (Bell and Morse 2012). To be useful, sustainability indicators need to be easily 

measurable, sensitive and responsive to stress, correlated to other indicators, and be at least partly 

representative of the state of the system (Dale et al. 2015). A set of clearly defined indicators 

provides a way to simplify and represent a complex system. Sustainability indicators are often 

used to measure or model the current state of a system as a baseline but can also be used for 

simulation and modeling of system performance for alternative current or future scenarios. 

Current measures (for example, of nitrate concentration in water) can be classified as ‘state’ 

indicators (Bell and Morse 2012).  Hansen and Jones (1996), in one of the pioneer agricultural 

sustainability assessment studies, point out that if sustainability assessment is future-oriented, the 

assessment should include simulations of how current decisions impact the future because of the 

definition of such assessment. Simulated values can be used in the assessment, either representing 

the rate of change or describing the result of the actions, thus serving as either ‘driving forces’ or 
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‘response indicators’ according to Bell and Morse (2012). Different types of sustainability 

indicators that represent agricultural systems and their performance have been integrated into 

several decision support and optimization tools (Bonner et al. 2016, Balezentiene et al. 2013, 

Parish et al. 2012, Dantsis et al. 2010). 

 

Landscape planning for sustainable long-term agricultural operations has been attempted 

and documented in multiple case studies. Parish et al. (2012) developed a multiobjective 

optimization tool that identifies candidate locations for switchgrass placement on a farm and 

takes into account economic and environmental factors. That model’s operation was Geographic 

Information Systems (GIS)-based and carried out within the Biomass Location for Optimal 

Sustainability Model (BLOSM). The model considered a range of environmental and economic 

factors but did not include social factors in the assessment. Mendecka et al. (2020) sought an 

optimal biodiesel production scenario using several sustainability parameters but represented each 

pillar of sustainability with only one aggregated indicator without including the diversity of 

sustainability indicators. Human health has been also used as an indicator to signify the social 

influences. A study by Tien et al. (2018) incorporated the need for coupled human-nature 

assessment as suggested in Ness et al. (2007) by combining several models for a more holistic 

sustainability assessment. The authors argue that by both evaluating the ecosystem services and 

the economic implications of agricultural decisions could better inform regional decisions in 

agriculture. However, like many before them, Tien et al. (2018) did not consider social indicators. 

 

Predicting and quantifying a decision’s impact on complex and dynamic systems 

including agroecosystems and other managed landscapes at either local or global scales can be 

challenging. Frameworks of analysis have included limits to growth (Meadows et al. 1972), 

ecosystem services and natural capital (Costanza and Daly 1992, Costanza et al. 1997), ecological 
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footprint relative to planetary carrying capacity (Rees 1992), planetary boundaries (Rockström et 

al. 2009), and sustainable development goals (Griggs et al. 2013); these and other frameworks 

have been used to estimate the impacts of natural resource decisions on the future. Many of these 

frameworks discuss and quantify ecological boundaries or amounts of resources that people 

cannot exceed in their use. While all of the frameworks mentioned above can be useful for 

agricultural decision-making, some of them, like planetary carrying capacity or planetary 

boundaries, focus on large geographic areas that could be difficult to relate to on-field decisions. 

In contrast, ecosystem services could a concept that could help evaluate the impact of a decision 

on-the-ground.  

 

Ecosystem services have been commonly used in agricultural studies to quantify the 

impact of agricultural practices and can serve as inputs for sustainability indicators. Ecosystem 

services are products of nature that can be used for improving human livelihood (Boyd and 

Banzhaf 2007).  They include, among others, cleanliness and security of access to water and air, 

pollution mitigation, climate stabilization, biodiversity, recreation opportunities and the aesthetics 

of the surroundings. Ecosystems, including agroecosystems, can “provision” these services to 

humans either naturally or with human management, which is why this framework has been 

widely developed in the agricultural context (Robertson et al. 2014, Costanza et al. 2017). 

Ecosystem service studies quantify the value a specific practice or service could have to the 

community, often by estimating the costs of providing that same service by artificial means.  

Because the focus is on provisioning humans, the ecosystem service approach has sometimes 

been named as anthropocentric (Silvertown 2015), and that is why such services are quantified to 

assist stakeholders as they decide between alternative management strategies and their associated 

sustainability indicators and outcomes. 
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Assigning a value to ecosystems services can be tackled in three ways. First, the cost of 

not having the service could be estimated, either by calculating the price of a substitute (e.g., 

piping in clean water, filtering air, or treating people for ill health). Second, if a specific new 

method or crop can be shown to provide a service similar to a conservation practice that is 

already subsidized, the current value for that ecosystem service could be assigned to the new 

environmentally beneficial practice to make it more marketable. Third, if the difference between 

current traditional agricultural practices and the alternative can be determined, a subsidy can be 

provided to compensate for the difference. The second and third methods were used by 

Woodbury et al. (2018), where the authors propose a payment for N loading reduction by 

switchgrass. The payment could be based on amounts currently used to subsidize winter cover 

crops or could also equal the difference between the profitability of row crops that can be grown 

in the area and the profits from growing switchgrass for bioenergy and bio-products.   

 

Instead of assigning a monetary value to ecosystem services, a stakeholder can establish 

the value function or the utility value of that service or indicator, as suggested by utility theory 

(Fishburn 1970, Tversky and Kahneman 1981). For each of the indicators or services, the initial 

unit of measurement would differ depending on the model or field data used. The utility or value 

function helps bring those different measures to a consistent range, for example, between 0 (least 

value) and 1 (highest value). Furthermore, the stakeholder can assign weight – priority – of the 

indicator to further specify the value of the service compared to other services. The utility values 

and weights can assist sustainability optimization by establishing a common unit of measure and 

allowing not only single-objective optimization but multi-objective optimization approaches.  

 

Sustainability assessments can use similar inputs as ecosystem services studies but be 

more broadly inclusive of both inputs and indicators. For example, ecosystem services typically 
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omit some social factors that are otherwise included in sustainability assessments (Dale et al. 

2018). Assessments that have included social factors include social life cycle assessment (Dreyer, 

Hauschild et al. 2006) and corporate social responsibility assessment (Hopkins 2005). Social 

factors are often highly salient to stakeholders as they represent people’s well-being and 

community sustainability. Some of those factors might be hard to estimate, but proxy 

measurements can be used to find social indicator values like the measures in Dale et al. (2013).  

Given the diversity of factors that can be included in sustainability assessments, stakeholders 

need to be involved in the selection of the most important factors to ensure the usefulness of the 

assessment in a particular context.  

 

Some researchers suggest adding multiple stakeholders to the sustainability and decision 

analysis to incorporate a full range of perspectives (Elghali et al. 2007). Such a multi-stakeholder 

approach is easily justified by the agricultural, industrial and institutional complexity of the 

bioeconomy problem, which spans the globe and where transitions are likely to take decades. 

Nevertheless, the sustainability indicators and assessments required for commercial growth of a 

bioeconomy are needed at different – smaller and shorter – dimensions of space and time to 

inform smallholders and other agricultural producer decisions, which will have different values 

and motivations than policymakers or business leaders operating at national or regional levels. To 

correctly represent the sustainability indicators and the spatio-temporal scales at which such 

indicators are measured, stakeholder engagement is necessary.   

Stakeholder engagement 

The influence and functioning of stakeholders, including organizations and agencies, 

varies between geographic and political scales. Thus, it is reasonable to anticipate their values and 
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priorities, and the sustainability indicators that they find relevant would differ with scale as well. 

For farm-scale decision-making, some researchers have used agricultural producer profiles to 

represent the different opinions. Farm profiles are often generated from ethnographic studies in 

the region of interest. Several different approaches have been used for classifying farmer types. 

For example, Brodt et al. (2006) defined three groups of farm operators: “environmental 

stewards,” “production maximizers,” and “networking entrepreneurs.” Other classifications were 

presented in Bakker and van Doorn (2009), where the groups were “active,” “innovative,” 

“absentee,” and “old.” Still other classifications are presented in a paper by Darnhofer et al. 

(2005): “committed conventional,” “pragmatic conventional,” “environment-conscious but not 

organic,” “pragmatic organic,” and “committed organic.” These classifications are based on the 

findings that education and profit goals would result in similar choices, or that social position and 

age will determine decision-making. It is important to recognize that farmer profiles will not 

precisely predict farmers’ choices, which is why alternatively farms can be directly engaged to 

assign priorities to indicators, and such engagement can lead to empowerment.    

 

The empowerment of stakeholders is closely linked to the concept of agency. Agency can 

be a way that authority is passed on to an executor, and the differences in interests between the 

agent and the principal can result in a conflict due to the so-called “agency problem” (Eisenhardt 

1989, Bendickson et al. 2016). Agency can also have a definition that is more centered on one 

person’s power: of being able to act freely (Samman and Santos 2009), or having “process 

freedom” (Ibrahim and Alkire 2007). In the context of selecting indicators, agency can be related 

to having the freedom to choose indicators that reflect the person’s priorities. As Ibrahim and 

Alkire (2007) discuss in their paper, that empowerment increases a stakeholder’s ability to impact 

the system. This dissertation extends Ibrahim and Alkire’s argument to the spatial and temporal 

dimension, by considering how sustainability indicators can be adapted to the different spatial 
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boundaries at which the stakeholders might be involved in decisions about bioenergy production. 

While the assessment in this dissertation is carried out for a 10-year average, stakeholder 

engagement results that are discussed in Chapters 2 and 4 indicate that decision support tools 

need to be flexible for multiple temporal boundaries.  

 

By expanding the types of bioenergy sustainability indicators and adapting them to the 

spatial and temporal scales relevant to stakeholders, these stakeholders could acquire more 

decision-making power and agency (Reed et al. 2006). If indicators are selected by a research 

team without substantive stakeholder input, the analyst is holding power over the decision factors. 

Even though the analyst might offer the final decision-maker a range of scenarios and multiple 

outputs on which to make the decision, defining the decision parameters can profoundly impact 

the decision outcome. If the decisions around bioenergy and agroecosystems involve deciding 

where and how much bioenergy crop is grown, or what the payment for a product should be, the 

analyst is assuming the role of an agent without being formally delegated to do so. By returning 

to the farmers or industry representatives as a primary decision-maker and discussing their 

priorities, the power at least partially could return to those decision-makers. An example of such 

empowerment is the work of Fraser and colleagues in communities across different countries as 

discussed in Fraser et al. (2005).    

 

Stakeholder engagement, like the engagement of agricultural producers, gives leverage to 

stakeholders in decisions that would affect them by including their opinions on the decision 

criteria. If researchers and policy-makers rely only on their expertise, they impose their power 

and biases onto the people that are affected by the decision (Slätmo et al. 2017). Such a top-down 

approach hinders the adoption of sustainable agricultural practices, as they may fail to address 

important goals and key performance indicators that are critical for specific stakeholders, such as 
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financial or labor constraints. Stakeholders can have greater control over the decisions through 

interactive participation (Pretty 2008), and such interactive participation can be in the form of 

model co-development (Voinov and Bousquet 2010). Similarly, decision support can include the 

values and priorities of stakeholders, which has been named as “value-based decision support” 

(Tuana 2020). Agency and empowerment are advanced when stakeholders have the power to 

define decision criteria, and the method used for decision-making is transparent and accessible. 

These components of research and implementation are central elements to transdisciplinary 

approaches.   

 

Empowering stakeholders can help increase the likelihood that they will carry through on 

decisions. Saam (2007) discusses how the stakeholder’s and the modeler’s perspectives are often 

substantially different with respect to risk perception and information access. Understanding 

which stakeholder takes most of the risk could help clarify whose indicators should be included in 

the analysis. For example, representatives of the industry and farming take most of the risk by 

changing their practices. That risk can be mitigated through subsidies or grants from the 

government or NGOs.  

 

Samman and Santos (2009) suggest that agency and empowerment can be exercised at 

different levels – they mention micro, meso, and macro – and across different domains. These 

authors argue that different stakeholder categories (which parallel geographic extents) require 

different sets of skills. Such an approach recognizes that each level of stakeholders has decision-

making authority within their level, even though it might be expressed differently in the 

organization chart of a hierarchical organization or among different businesses collaborating in a 

value chain. Following that logic, each level should also have a corresponding set of indicators, as 

using a set that might be relevant to a different level would take power from the groups of 
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stakeholders who happened to work at the other levels. For example, if the sustainability of a 

bioenergy system is measured only at the landscape level, such analysis would miss the finer-

detail priorities of those that put the bioenergy crops on the ground, and the resulting designs 

might not be readily applied on the field.  

 

Exercising power across domains can be paralleled to the concept of agency of a 

profession. Agency through a profession can be a useful strategy to describe the relationship 

between the stakeholders – they have different roles and different personal priorities/goals tied to 

the profession, which frames where the information asymmetry could come from (beyond the 

physical distance to land). For example, if a researcher selects decision criteria for the farmer, 

they apply their agency to a decision that should instead have been determined using decision 

criteria coming directly come from the farmer. When defining stakeholders that should be 

engaged in the decision-making, researchers should consider who has the actual power over the 

decision and make sure that the method of engagement matches the capabilities of the 

stakeholders (Reed 2008).  

 

As a result of engaging stakeholders, the solutions that analysts develop might be more 

readily accepted and implemented. Many project developers avoid stakeholder engagement out of 

fear of public resistance, attempting to maintain secrecy while permitting is underway. This 

practice is sometimes referred to as “announce and defend”, and while it is sometimes effective in 

getting projects implemented it can also generate fierce opposition and project failure.  In 

contrast, McGuinness and Slaughter (2019) argue that the stakeholders are part of the solution 

rather than the problem. Increasing numbers of companies now formalize stakeholder 

engagement early in the development of projects in order to obtain the social license to operate. 

Such a concept has been applied in industries like mining (Owen and Kemp 2013), but too often 
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this still means engaging stakeholders to approve a plan, rather than to co-generate knowledge 

and decisions.  

 

Bioenergy supply and processing is a complex system that involves multiple stakeholder 

groups with different goals. Multiple authors suggest that sustainability decision analysis should 

incorporate a full range of perspectives of stakeholders (Elghali et al. 2007), but such engagement 

would require consensus between the stakeholders. According to Fraser et al. (2006) each 

‘element group’ (or, as this dissertation refers to, stakeholder group) has a different objective and 

thus different indicators and control mechanisms are needed if that objective is to be met.  

Farmers, government, NGOs, industry, the general public – all can be treated as element groups, 

and have different objectives. Hardin (1968), in his foundational paper on governing the 

commons, characterizes those differences as challenges because he sees the groups being locked 

in their own group paradigm and trying to improve their own ‘herd.’ However, Ostrom (1990) 

challenged this thinking by discussing that stakeholders can escape the “trap” of their group 

paradigm through effective strategies of engagement. While every group and person has a 

different set of “goods” and these “goods are incommensurable” (Hardin 1968), bringing 

stakeholders together can help establish common ground and create value for all participants 

(Horisch et al. 2014). Consensus can be reached through effective stakeholder engagement by 

“committing to a cooperative strategy that they themselves will work out” (Ostrom 1990). 

 

The choice of whom to empower in the decision-making process, and through them the 

decision criteria that will eventually be evaluated, is clearly critical to sustainability assessments.  

As described above, there is a wide universe of potential stakeholders, and in most cases it will 

not be practical to include all of them. Downselecting the most relevant and necessary groups can 

be assisted by formal methods of stakeholder analysis. Garvare and Johansson (2010) define the 
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stakeholders of sustainable development as those who have the power to act towards their needs.  

The authors themselves point to the challenges in identifying where that power lies, and 

determining what is a “need” compared to a “want.” Prell et al. (2009) suggested that stakeholder 

selection depends on the specific problem. Such an approach is practical and transdisciplinary in 

the way that it makes the research problem-driven. Stakeholders are interconnected through social 

relations, so it can be useful to map and analyze the network of the stakeholders to understand 

where connections are strong and where they are weak. As several authors have illustrated (e.g. 

Rowley 1997, Bendickson et al. 2016), network theory can also help understand the diversity of 

opinions that the stakeholders have. Beyond network analysis, and because many stakeholders are 

guided not only by economic benefits, social embeddedness theory can provide a framework to 

help analyze and explain these interactions (Le Breton-Miller and Miller 2009). Whichever path 

is selected for stakeholder analysis, it can help identify the key stakeholders that need to have a 

say in bioenergy decisions. This dissertation focuses on the agricultural producer, the most 

critical group involved in decision-making about agricultural landscapes and sustainability 

planning. However, the approaches developed here can be extended to other stakeholder groups 

and other natural resource decision problems.    

Research goals and research area 

This dissertation work borrows concepts and terminology from different scientific 

disciplines, including operations research, sustainability science, economics, agroecology and 

other fields. Sustainability science examines the interactions between the natural and social 

worlds in space and time, and through the multiple lenses of stakeholder values (Kates et al. 

2001); this research attempts to do this as well. Stock and Burton (2011) describe sustainability 

research as a transdisciplinary approach that calls for cooperation and partnership, which may 
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explain why sustainability has served as a driving force for global and regional policy-making 

(Triandafyllidou and Fotiou 1998). Although much of the sustainability literature has been 

multidisciplinary, including the formulation of Sustainability Development Goals, the Natural 

Capitals approach, or the triple bottom line, sustainability science borders between stakeholder 

consultation, policy-making and foundational science and calls for direct interaction with 

stakeholders.   

 

Landscape ecology provides a useful terminology to understand scale and extent in 

decision-making. Taking the landscape ecology approach to decision-making, it is important to 

include considerations of natural components like topology, soil, and microclimate, and also the 

social interactions with those biophysical features – including not only the anthropogenic 

impacts, but also the value or connection that the inhabitants feel to the land (Tress et al. 2001). 

Inevitably, if the landscape is involved, so are people, including people that own/have a 

stake/have memories in that land. The connection between the social and natural components of 

the landscape becomes especially visible from the ecosystem or landscape services concept 

(Termorshuizen and Opdam 2009): that literature discusses the natural or landscape provisions as 

having a specific value to humans, and the natural resource decisions are made based on that 

value. Even the scale or extent at which a decision is made depends on human and natural 

constructs (Lebel et al. 2005). For example, if the government officials are deciding on the levels 

of nutrient reduction loads in the watershed, the ‘watershed’ is not only defined by the natural 

condition but also how those natural conditions were interpreted and altered by people.    

 

As with landscape ecology, agroecology – which is another discipline within which this 

dissertation research could reside – is transdisciplinary (Mendez et al. 2013). This research 

approach integrates scientific ecological knowledge with local farmer knowledge, meaning that 
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two-way learning and engagement are central to the inquiry. Furthermore, agroecology considers 

both on-farm impacts and also the broader impact on the environment and community, making it 

multiscalar.   

 

This research project stands on the border of discovery science, helping to understand 

how agroecosystems and agricultural business are impacted by cropping system decisions with 

respect to various dimensions of sustainability, and translational science, applying this practical 

knowledge to inform decisions and enhance farm management.  This border-spanning is another 

characteristic of transdisciplinary research. The management component applies the scientific 

concepts to current problems. The application of research in management, although possibly 

contrary to some philosopher’s understanding of the role of scientists, answers the modern call 

for action from the scientific community (Brandt et al. 2013, Bornmann 2012). Such engagement 

can add a new layer to the transdisciplinarity when not only stakeholders are engaged in science, 

but when scientists are engaged in decisions and action.   

 

Building upon the available literature across the disciplines and using input from 

stakeholders, this dissertation develops a decision support framework to assist producer decision-

making about where to place perennial grasses relative to annual crops, with the objective to 

maximize the utility of sustainability indicator values using spatial decision analysis. To do so, it 

fills the research gap in establishing a decision support tool that is based on agricultural producer 

values and converts those values into actual field layouts that can be operable. 



 

 

Chapter 2 

 

Producer sustainability perspectives: conservation perennial grass, perennial 

bioenergy, and corn stover-harvesting producers and their values, geographic 

and temporal concerns 

Abstract 

Agricultural producer priorities and values strongly influence the actions and decisions 

that they take. In the bioenergy context, if society’s sustainability goals require increasing 

bioenergy feedstock production, that will happen more rapidly if the planning and 

implementation of biomass supply holistically addresses producer needs and priorities. This paper 

discusses the priorities of stakeholders that are engaged in bioenergy crop production and 

considers their perspectives with respect to space and time. The goal of the study was to identify 

the priorities that can serve as the foundation for producer decision support on planting perennial 

grasses. A mixed-method approach of semi-structured interviews and quantitative priority 

elicitation was used to understand producer priorities. To include a broad array of perspectives, 

three producer groups were interviewed for this study: those that plant and harvest perennial 

biomass crops as part of bioenergy projects, those that harvest corn stover to supply bioenergy 

plants, and those that establish perennial crops for conservation purposes and are not currently 

marketing those crops for bioenergy. Results demonstrated that several key priorities, including 

profitability, financial stability, and soil quality, were important across all the producer groups. 

Other priorities like preventing soil erosion and improving water quality were more important to 

the conservation and perennial biomass crop growing groups compared to the corn stover 

growing group. Although the responses suggest that the conservation and perennial biomass crop 

growing groups may be more concerned with longer-term outcomes, all the producers 
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interviewed considered multiple spatial and temporal boundaries in their decision-making. This 

study provides insights as to the priorities that are particularly relevant to different producers that 

have planted perennial grasses or harvested biomass for bioenergy, including the spatial and 

temporal dimensions of indicator variables. This study can help inform which priorities can be 

measured and modeled to inform producer decisions about bioenergy crop production. 

Introduction and research background 

Biomass supply is one of the main requirements for expanding the bioeconomy – 

increasing the fraction of the economy that uses plant and animal waste materials as feedstocks 

for energy and materials production. Agricultural producers are the foundation to the bioeconomy 

supply chain, which means that their success is necessary for a healthy bioenergy and 

biochemicals industry, and bioeconomy-related decision-making would benefit from their 

perspectives (Schmid et al. 2012). Designing biomass supply systems that explicitly address 

producer needs could increase the chance of their buy-in, and as a result increase the rate of 

bioenergy crop expansion (Lewandowski 2015). 

 

Engaging producers through interviews is one of the approaches used to understand their 

needs and priorities. Typically, such interviews have focused on understanding producers’ past 

decisions or management approaches (Busck 2002, Reimer et al. 2011). By then separating 

producer values into typologies or categories it may be possible to backcast decisions and develop 

predictive models of group behavior which can then be useful in designing new policies or 

economic incentives. In this study, interviews with producers were instead designed to help 

understand producer priorities in order to inform research and communication needs and support 

decision-making by a wide range of producers or landowners, regardless of their group, typology, 
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or category. For consistency in this study, we use the term “producer” to refer to the groups that 

were interviewed, because this term includes both landowners and tenants as defined in the most 

recent Census of Agriculture (USDA NASS 2017). Participants were contacted for the interviews 

as part of one of the three production categories (i.e. growing perennial grasses for conservation 

or biomass production, or harvesting stover for bioenergy feedstock supply) based on the 

information that regional and research project collaborators have provided about the producers. 

Participants were only categorized by their production activity to ensure that different 

perspectives are represented, rather than being categorized into environmentally-minded or profit-

oriented producers based on the outcomes of the interviews. This distinction was not intended for 

group modeling but rather to ensure that different types of participants are included for the 

interviews and that research, education, and decision support systems around biomass production, 

farm field planning, and the design of agricultural landscapes are responsive to the differing 

values and priorities. 

Theoretical framework 

Producer priorities and values, and the decisions that result from them are at the center of 

this study. The assumption that producer priorities will guide their decisions is based on the 

theory of planned behavior (Ajzen 1991, Senger et al. 2017). The theory states that a person’s 

beliefs lead to behavioral intentions which in turn lead to actions (Ajzen 1991). Value-belief-

norm theory (Stern et al. 1999) suggests that environmental stakeholder values can be expected to 

lead to corresponding pro-environmental behavior (Oreg and Katz-Gerro 2006). For example, a 

study by Wensing et al. (2019) suggests that environmental values of farmers can make them 

more likely to have a positive attitude towards expanding a sustainable bioeconomy. Wensing et 

al. (2019) apply the value-belief-norm theory and theory of planned behavior to illustrate that 
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farmers’ interest in valorizing the by-products of vegetable production can be correlated with 

farmers’ worldviews and values, where the interest was understood as behavioral intention. 

 

Besides priorities themselves, this study evaluates the time and space dimensions of those 

priorities. The dimensions of time and space are frequently considered in scenario development 

and output analysis of bioenergy sustainability models. However, these dimensions rarely have 

been explicitly used to understand and frame stakeholder’s priorities. Stakeholders have space 

and time boundaries within which they operate and influence (and which they are influenced by), 

and these are typically the geographies and timescales that they care strongly about. Adams 

(1995) discussed a person’s space-time dimensions suggesting that actions can be used to place a 

person on a space-time diagram. By stating that “people’s actions externalize their values, 

expectations, and knowledge”, Adams connects the space-time boundaries of a person to the 

theory of planned behavior and value-belief-norm theory. When the priorities of a person are 

expressed and assessed within a specific space-time boundary, then the stakeholder would be 

more conscious of their decision’s impact within those boundaries. For example, if a producer is 

concerned about shrimp farmers in the Gulf of Mexico (a value and priority), they might be more 

likely to change their practices and behaviors to minimize harm to shrimp farmers within that 

spatial boundary, especially if they understand the impact that individual farm decisions on 

distant places can have at that scale.  

 

Given that a person has specific space-time boundaries for their actions and influences, it 

is not surprising that their concerns have space-time boundaries as well. But the spatial and 

temporal extents of concerns may not be the same for a given individual across all concerns. For 

example, one priority of a producer, such as food security, could be emphasized at a planetary 

level, but others, like soil quality or crop profitability, could be expressed and evaluated at a farm 
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or even subfield level. Uzzell (2000) has studied how perceptions of environmental problems can 

vary depending on whether the problem is local or global. Interestingly, this study finds the 

inverse effect of distance relative to individual actors; the further away the problem is, the more 

important it seems. This finding may be because global problems seem larger or more 

overwhelming, but also because people feel like they as individuals can have less impact over 

those global problems, even though they seem more serious. In the context of climate change 

problems, Haden et al. (2012) found that adaptation is increased by close proximity to a specific 

climate change challenge (e.g., flooding, drought), but efforts at mitigation are increased when 

actors understand the massive scale of the global challenge (e.g., methane or nitrous oxide 

emissions, or increased soil carbon storage). That is why Haden and colleagues suggest framing 

mitigation strategies as global issues, but adaptation issues as local issues. Following that logic, 

by understanding producers’ space-time concerns, sustainability indicators associated with 

bioenergy goals can be framed as either global or local depending on whether they are mitigation 

oriented (e.g., reduce greenhouse gas emissions associated with farming or transportation) or 

adaptation oriented (e.g., improve soil health, more resilient crops, and more stable income), 

respectively. 

Previous studies 

Several previous studies have investigated producer priorities and beliefs in relation to 

expanding bioenergy crop production. Frequently, such studies explored the willingness of 

producers to adopt bioenergy crops – both harvesting bioenergy crop residue and producing 

dedicated bioenergy crops - with results categorizing producers as pro-environmental/sustainable 

or conventional, and summarizing the common priorities of the producers (Eaton et al. 2018, 

Eaton et al. 2019, Gowan et al. 2018, Rossi et al. 2011, Skevas et al. 2016, Tyndall et al. 2011). 
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Tyndall et al. (2011) surveyed Iowa farmers about their willingness to harvest corn stover for 

bioenergy. They state that 17% of the surveyed farmers are interested in such harvesting, with 

most of them in North-Central Iowa. The authors asked interviewees about their environmental 

concerns and reported that farmers who were interested in harvesting stover had lower levels of 

environmental concerns about the process. Bergtold et al. (2014) surveyed Kansas farmers to 

produce cellulosic biomass, including corn stover, and suggest that over 80% of survey 

participants were willing to harvest corn stover. Instead of categorizing farmers by type, these 

authors explain the willingness to adopt new practices by geographic location, suggesting that 

farmers in dryer regions in Kansas (like western part of the state) can be less likely to harvest 

stover because they prioritize preserving soil moisture content. The authors suggest that interest 

in harvesting and selling corn stover, like other bioenergy crop production, could be explained by 

whether they perceive such operations as a source of additional income.   

 

Several studies have considered how producer concerns and beliefs about specific 

agricultural practices could influence the likelihood of perennial bioenergy grass adoption. 

Skevas et al. (2016) found that assuming the same rental price, farmers in Michigan were more 

likely to rent land out for perennial grasses than poplar trees or corn. Furthermore, the authors 

suggest that the farmers who use their landscape for recreation and value it for the scenery, are 

more likely to adopt dedicated bioenergy crops. Eaton et al. (2018) studied socio-cultural 

concerns of farmers who are likely to adopt perennial grasses, and showed that while a farmer’s 

profit- and production-orientation did not predict whether a farmer is likely to adopt perennial 

crops, the symbolic meaning a farmer assigns to the farming practice or their own land could be 

an explanatory variable. For example, Eaton et al. (2019) found that the farmers who believe that 

dedicated bioenergy crops like willow or switchgrass are a way to solve environmental challenges 

and enhance the farm’s harmony with nature were more likely to adopt such crops. Gowan et al. 
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(2018) found that valuing profitability and soil preservation was correlated with the interest in 

growing perennial crops. The qualitative study by Rossi and Hinrichs (2011) suggests that 

potentially negative social impacts of bioenergy crops and the resulting bioeconomy could make 

producers more skeptical of bioenergy grasses like switchgrass. Overall, producer perceptions of 

perennial bioenergy crops and the factors that influence the likelihood they will adopt such crops 

are complex, and linked to sometimes conflicting social, economic and environmental priorities.   

 

Although most of the studies referenced above were prospective studies of producer’s 

potential “willingness to adopt”, some studies have considered the relation between producer 

beliefs and the actual adoption of new practices. A study by Comer et al. (1999) explored how the 

beliefs of “sustainable” and “conventional” farmers correlated with their adoption of switchgrass 

production. The results of their survey found that the “sustainable” farmers believed more in the 

benefits of environmentally-friendly agricultural practices, and were two times more likely to 

adopt new practices than the “conventional” farmers. Categorizing producer groups by their 

values and priorities could predict the types of practices that producers adopt and their frequency, 

but also illustrates the diversity of perspectives of different individuals in the same occupation. 

Again, the goal of this study is not to classify the producers by their adoption interests, but rather 

to build on the producer priorities observed in the literature, to include diverse participants in the 

interviews, and thus to generate a range of sustainability indicators that reflect those diverse 

priorities that can help guide bioenergy research, education, and on-farm decision-making.  

 

Building on the literature on producer values and their willingness to adopt bioenergy 

crops, the goal of this study is to highlight the diversity of producer priorities, and their 

conceptualization of space and time boundaries for those concerns to set the foundation for value-

based decision support (Tuana 2020) of individual farm landscape designs.  
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Methods and study context 

This study combines methods from two different disciplines – social sciences and 

operations research. Following the social science approaches, agricultural producers were 

interviewed using semi-structured interviews. During the next phase of the interviews, a select 

group of the same producers were asked to set priority weights and select time and space 

boundaries for sustainability indicators of their concern. Each of the approaches was implemented 

as a separate interview phase, as illustrated in Figure 2-1. These methods are discussed in more 

detail below. 

Semi-structured interviews 

The interviews were conducted with agricultural producers active in Iowa. All 

interviewees were landowners, yet some rented land for farming in addition to what they already 

 

 

Figure 2-1:    Division of producer interactions into two phases. 

Phase 1

Sustainability tracking

• Priorities and future outlook

• Temporal boundaries

• Spatial boundaries

Decision input

• Indicators affecting the decision

• Sources of information and people who affect 
the decision

Phase 2

Sustainability tracking

• Priorities that affect decision-making

• Measures for priorities

• Spatial and temporal boundaries for 
measures

• Weights on priorities

Decision input

• Feedback on the proposed decision-support 
approach

• Preferences for decision support
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owned. Most were actively farming their land, but many leased parts of their land to other 

producers. As mentioned earlier, we use the term “producers,” which represents the person(s) 

involved with on-farm decisions and includes landowners and tenants (USDA NASS, 2017) to 

account for and justify this mix of interviewees. The intent of this study is to identify priorities of 

producers across different groups that might grow and harvest biomass for the bioeconomy. With 

the goal of capturing a range of perspectives relevant to the study topic, three groups of producers 

were identified and interviewed: 1) those that have established perennial grasses for conservation; 

2) those that harvest perennial crops (i.e., switchgrass or miscanthus) for biomass; and 3) those 

that harvest corn stover for bioenergy use.  

 

Before beginning the interviews, the purpose of the study was presented to the 

participants as the effort to better understand producer priorities in decision-making about their 

production choices and design of their agricultural landscape. Interviews were conducted at the 

producers’ convenience in locations including their homes, machine workshops, or nearby 

businesses. During the first phase of interviews (February 2019), some participants who wanted 

to participate were traveling for the winter season, which is why four interviews were conducted 

over the phone.  

 

Participants were selected using the key informant method, meaning that stakeholders 

familiar with agricultural practices on the ground in the study region were approached (Marshall 

1996). They then recommended producers meeting the study’s producer sample criteria and who 

might be interested and willing to participate in the study.  These prospective participants were in 

turn contacted by the researcher. Producers in the perennial grass conservation grower category 

have grown perennial grasses as a conservation practice to provide wildlife habitat and to 

improve local water quality: they were identified and contacted based on suggestions from local 
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Natural Resource Conservation Service (NRCS) officers. Producers in the crop residue-

harvesting category had experience harvesting corn stover and marketing that stover to a 

cellulosic ethanol plant; they were identified and contacted through representatives of a local 

bioenergy facility. The third category was producers contacted through perennial grass bioenergy 

projects; they grow either switchgrass or miscanthus for bioenergy supply chain research and 

demonstration and were selected based on their participation in these bioenergy research projects. 

All participants were contacted by phone to set up a time for the interviews. Although most 

participants were identified before the interviews began, additional producers were added to the 

sample using the ‘snowball’ method. All interview participants were asked to offer 

recommendations of other agricultural producers for the interview. The method in which 

participants were selected and how the participant interview data were processed could be 

affected by the researcher characteristics and motivation. Possible researcher bias is described in 

Appendix A. 

 

During Phase 1 of the study, 33 face-to-face and four phone interviews were conducted. 

Those 37 interviews included 46 different people, because some of the in-person interviews were 

conducted with both the husband and the wife present as producer pairs. On average, the 

interviews took 48 minutes. All interviews were conducted by the first author (Vazhnik). The 

corn stover-harvesting group interviews were supported by a note-taker (Jennett) during the 

interview. The interviews followed an interview guide with questions and protocol provided in 

Appendices A-1 and A-2. After the interview, a post-interview form was completed to summarize 

the first results.  

 

During Phase 1, the interviews explored what priorities producers have for their 

operations. Furthermore, the researcher asked what “progress” would mean to producers and how 
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they would measure it, over what period of time and at what geographic extent, and how that 

measure would impact their decisions. Exploring the decision process of the producers, the 

researcher asked what geographic boundaries and timespans producers were most concerned 

about, and what sources they used to inform their decisions. 

Priority weight elicitation 

Priority weight elicitation was done as an approach to quantify producers’ priorities and 

was borrowed from similar approaches in decision analysis research. Several previous efforts 

have engaged stakeholders in developing decision support tools for land use change (Gladwin 

1983, Bojórquez-Tapia et al. 2001, Jakku and Thorburn 2010, Rose et al. 2016, Ocampo-Melgar 

et al. 2017). However, such engagement has usually been limited to evaluating indicators and 

scenarios developed by the analyst, so that the stakeholders’ role was simply to prioritize or 

choose. Kodikara et al. (2010) offered stakeholders several priorities and six preference functions 

(or, as they are named in this study, ‘utility functions’). The weights for each priority were 

solicited using cards with the priorities, the participants were asked how many times one priority 

was more important than the other, and the results were recorded in a software for preference 

ranking (PROMETHEE). 

 

Fifteen face-to-face interviews were conducted with a total of 19 people in the Phase 2. 

The participants were from the same groups that were interviewed during Phase 1, and no new 

producers were added. All participants from Phase 1 were contacted about their possible interest 

in participating in a follow-up interview, and the 15 interviews were held with those agricultural 

producers that were available. Six producers were interviewed from the corn stover harvesting 



30 

 

category, five from the perennial biomass crop category, and four from the perennial grass 

conservation category. On average, the Phase 2 interviews lasted 61±23 minutes. 

  

The Phase 2 interview aimed to achieve deeper exploration of the decision priorities and 

the dimensions of the priority indicator variables. Phase 2 interviews were guided by recognition 

that the weight (importance) might differ between each indicator, as might the temporal and 

geographic spatial extents that concern producers. Interviewees were asked to indicate their 

priorities by assigning a specific number of poker chips to the indicators that affect their decision, 

and to specify for each of the indicators what spatial and temporal boundary was of greatest 

concern or interest to them. Furthermore, participants were asked to explain the reasoning behind 

their choices. They were also asked to provide feedback about sample output from a decision 

support simulation of a typical Iowa farm. All participants were shown the same landscape design 

for consistency and commented about the information being useful or not as well as how it could 

be improved.  

Spatial and temporal context of study 

To reduce the possible correlation between the priority-related answers of the producers 

and the region where they operate, producers in each of the three categories were interviewed in 

several different regions across the state. However, the distribution was not uniform because 

some parts of the state are more suitable for larger operations or stover harvest (as reported in 

Tyndall et al. 2011), while others have greater need for perennial buffer strips because of the 

slopes of the fields. For confidentiality reasons, the regions of producers are not included as part 

of the producer demographics, even though the region may have some influence on producers’ 

decision process, priorities and ultimately their choices (Bergtold et al. 2014).   
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Figure 2-2 presents a map of the areas where producers were interviewed. Central-West 

Iowa consisted of farms on rolling hills with some forested areas. The hilly terrain defines what 

practices many of the producers consider appropriate: no-till, cover crops, and prairie strips to 

prevent erosion. In that region, one is likely to see pheasants and deer cross the open fields 

between forested and shrubby areas. Several of the producers from this region noted they earned 

additional income by allowing hunting on their conservation plots and woodlands. The area has 

some beautiful lakes, which attract tourists and results in nature reserves and vacation homes with 

high property value. Many of the producers in that region are likely to have a side-job in Des 

Moines or in a smaller regional town or be retired. Most of the towns and houses have a suburban 

neighborhood character because of proximity to Des Moines.  

 

North-Central Iowa is north of Des Moines and included producers that work on mostly 

flat land. Row crop related agricultural businesses thrive in this area because of high crop 

productivity. Several of the producers interviewed in the area not only grow corn and soybeans, 

but also keep cattle and use some of their crop residue as animal feed. All of the producers 

interviewed in that region were farming full-time, and the only diversification that some of the 

producers had was livestock. The producers in that region are used to interactions with media and 

researchers because of the proximity to Iowa State University’s campus and because they are 

frequently visited by reporters. 

 

South-East Iowa also included some higher-yielding farms, but many producers indicated 

that they have to diversify to survive. That often meant not only side-jobs and side-businesses, 

but also having hogs, vegetables, and fruit. The area was mostly flat, but the quality of the roads 
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and the empty storefronts in small towns suggested that the region has not recovered as easily 

from the farming crises as communities in North-Central Iowa.   

 

Seasonal timing of the interviews could affect how producers discuss their priorities, 

which is why we briefly describe when the interviews were conducted. Both phases of the 

interviews were planned for the off-season – the time when producers are not actively planting or 

harvesting to make sure that interview times did not conflict with such work. Phase 1 interviews 

were carried out in February 2019 and Phase 2 interviews were conducted in November 2019. 

During February 2019 five snowstorms occurred within the 20 days that the researcher was 

conducting the interviews, which allowed for the “down time” for producers since they were not 

conducting any operations besides taking care of any animals they might have. Mid-November is 

usually the time when harvest is finished which is why the second phase of interviews was 

scheduled for that time. This assumption was partially correct because some producers had 

finished the harvest, and because there were several snowfalls and snowstorms during the period 

 

 

Figure 2-2:    Iowa regions where interviews were carried out (marked in light yellow). 

Des Moines 
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of the interviews. Still, some producers were still harvesting corn because the 2019 season had 

been delayed due excessive rainfall in the spring, summer and fall. The wet season not only 

delayed the planting by 2-4 weeks but also pushed the harvest dates back, forcing producers to be 

1-4 weeks late with harvest.  

 

Besides sub-optimal weather conditions, 2019 was a year with unstable crop commodity 

markets due to trade wars, which could have led producer participants to voice greater concern 

about trade at the planetary level because of the impacts of international trade disputes on their 

prices and profits for the year. 

Analysis methods 

Mixed method techniques, meaning a combination of qualitative and quantitative 

methods, were used both when collecting data and when analyzing the interview results. Mixed 

methods can be used to broaden and add detail to the research, as suggested by Johnson et al. 

(2008). Analysis was carried out by the same researcher who interviewed the producers and was 

done with the aid of online analysis software. The interviews were transcribed verbatim using 

Temi software (https://www.temi.com/) and coded using Dedoose software 

(https://www.dedoose.com/) using pre-selected codes for sustainability indicators and additional 

codes that emerged from the interview conversations. Initial categories for coding of priorities 

originated from a list of sustainability indicators generated by a literature review of agricultural 

and bioenergy sustainability indicators. As the interviews were analyzed, additional priority 

categories were added after a producer mentioned the priority two or more times during the 

interview. In addition to using direct participant quotes to inform the analysis, coded interviews 

were used to count the number of times the participants referred to an indicator or to the temporal 
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and/or spatial extent. Another quantitative technique, used during the Phase 2 of interviews, was 

the quantitative weights (out of 100 poker chips) that participants assigned to priorities, time and 

space descriptors of those priorities.   

Results and Discussion 

Characteristics of study participants 

The key demographic information for each of the interviewed producer groups for Phase 

1 interviews is summarized in Table 2-1. The perennial grass conservation producer group 

included 12 interviewees with an average age of 68±10 years and average acreage of 979 ac (396 

ha) of total land farmed (both owned and rented). Corn stover harvesting producers including 

nine participants with an average age of 49±14 years old and 3156 operated acreage (1277 ha).  

Perennial biomass crop producers were the largest group with 16 interviewees, with an average 

age of 71±10 years old and 1881 acres (761 ha) in operations. 
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 Perennial 
grass 
conservation 
producers 

Perennial 
biomass 
producers 

Corn stover 
harvesting 
producers 

Number of participants 12 16 9 

Male/female 10/2 16/0 9/0 

Average age 68±10 71±10 49±14 

Average area of agricultural operation 
of all crops (both owned and rented for 
farming) 
 

979 ac 1881 ac 3156 ac 

Highest education attainment level (#): 

-High school diploma  

-Additional courses and 

training beyond high school 

-Bachelor’s Degree 

-Master’s Degree 

-Doctorate Degree 

 

3 

3 

 

5 

0 

1 

 

6 

2 

 

6 

1 

1 

 

1 

2 

 

6 

0 

0 

 

Priorities 

Qualitative and quantitative analysis of the interviews illustrate the differences between 

different producer groups. The key priorities are listed in Table 2-2 in the order of how many 

producers mentioned the priority, repeat mentions by the same producer did not impact the order 

of how the priorities are listed in the table. The priorities provided in Table 2-2 are select 

priorities that could be most relevant for the decision-making. Tables 2-3 and 2-4 summarize the 

weights (adjusted to sum to 100%) that producers have assigned to the different priorities. 

Table 2-1: Phase 1 interview participants' demographic information. 
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Table 2-2:   Producer priorities and the number of mentions by different producer groups. 
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(n
=

3
7
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Profitability/cash flow  9 10 6 25 

Freedom and independence (how 
independent is the decision of outside 
impacts) 

8 8 5 21 

Water quality  8 8 2 18 

Erosion 6 9 1 16 

Soil quality/Organic matter in soil/Soil 
health 

7 5 4 16 

Lifestyle/Type of work/Life and work 
with family  

5 6 5 16 

Stable markets and prices  5 6 3 14 

Rural development 6 4 1 11 

Young farmers and young families in 
farming 

3 7 1 11 

Developing a positive image of farmers 
among outsiders and city-dwellers  

3 3 5 11 

Diversified production and markets 1 7 2 10 

Equal opportunity for small 
operations/Farms  

5 4 1 10 

Heritage/Tradition  4 4 1 9 

Biodiversity/Presence of wildlife 6 2  - 8 

Proximity to nature/Experience of 
pristine nature 

2 4 2 8 

“Feeding the world” 2 4 2 8 

Yields  2 2 4 8 

CO2 emissions  1 1 -  2* 
 

*Note: Because an important goal of identifying agricultural producer priorities is the further use of those 

priorities as sustainability indicators, CO2 emissions were included in the subsequent assessment. 

Following a similar argument as in Reed et al. (2006) indicators were selected that are meaningful to the 

stakeholders but also validated them through expert-selected indicators. CO2 emissions are one of the 

primary reasons why bioenergy solutions and thus markets for perennial crops are emerging, which is why 

this indicator was offered to stakeholders for assigning weight and time or space boundaries. In the 

subsequent interactions, producers could exclude this indicator entirely if it was not relevant to them. The 

complete list of producer priorities that have been identified are provided in Appendix A Table A-2.    
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Table 2-3:   Weights (out of 100) assigned to priorities based on the initial list of top 18 

sustainability indicators 
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Independence 2.05 4.1 1.46 2.55 3.05 3.4 2.25 3.18 

Equal 
opportunity 

-* - 1.18 2.63 0.26 0.64 0.50 1.54 

Financial 
stability 

10.82 2.22 5.53 6.89 19.94 16.37 12.71 12.34 

Profitability 16.51 3.8 26.63 28.86 16.37  6.52 19.83 16.76 

Yield 9.72 6.68 6.58 8.18 10.33 11.24 8.92 8.76 

Diversification 2.07 2.49 1.6 2.56 3.83 4.88 2.62 3.58 

Water quality 12.14 2.62 6.07 2.54 5.7 3.27 7.54 3.93 

Soil quality 10.4 0.91 12.43 13.38 6.87 4.77 9.67 8.11 

Nature 
proximity 

4.98 7.07 1.18 2.63 1.3 3.19 2.24 4.39 

CO2 emissions 4.46 5.23 - - - - 1.19 3.17 

Erosion 
potential 

12.9 4.81 9.55 7.59 4.29 3.46 8.34 6.26 

Wildlife 
presence 

- - 5.45 5.48 1.8 2.28 2.54 3.94 

Food 
production 

- - 2.16 2.98 5.89 6.43 3.08 4.87 

Rural 
development 

- - 1.8 2.65 0.78 1.91 0.91 1.96 

Positive image 5.36 4.16 3.52 3.28 2.71 4.36 3.69 3.85 

Farming 
lifestyle 

6.53 2.98 3.33 3.05 10.21 19.69 6.94 12.34 

Land 
inheritability 

- - 7.67 4.46 3.34 4.63 3.89 4.78 

Young farmers 2.05 4.1 3.86 2.47 3.34 4.63 3.17 3.68 
 

*Cells without values represent priorities for which no producers in that group assigned any 
weight (poker chips). 
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The top priorities differ between the producer groups, but one must note that only a small 

sample of producers was interviewed, thus it is not possible to talk about statistically significant 

differences. Still, some patterns emerge from the interview counts during Phase 1 and the weights 

that were assigned during Phase 2 of the interviews. Profitability was the top priority both based 

Table 2-4:   Weights (out of 100) assigned to priorities when three least-mentioned or confusing 

factors were removed. 
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Independence 2.05 4.1 1.62 2.89 3.28 3.66 2.40 3.37 
Financial 
stability 

10.82 2.22 5.92 7.31 20.57 16.01 
13.09 12.32 

Profitability 16.51 3.8 27.82 29.66 17 6.21 20.47 17.24 

Yield 9.72 6.68 6.99 8.6 10.46 11.18 9.11 8.82 

Diversification 2.07 2.49 1.77 2.9 4.2 5.38 2.82 3.93 

Water quality 12.14 2.62 6.36 2.48 5.97 3.33 7.74 3.84 

Soil quality 10.4 0.91 12.83 13.25 7.27 5.12 9.96 8.11 
Nature 
proximity 

4.98 7.07 5.71 5.59 3.26 3.92 
4.54 5.14 

CO2 emissions 4.46 5.23 1.33 2.98 -* - 1.63 3.44 
Erosion 
potential 

12.9 4.81 9.94 7.55 4.51 3.62 
8.56 6.25 

Food 
production 

- - 2.35 3.26 6.29 6.93 
3.30 5.24 

Rural 
development 

- - 1.95 2.96 0.83 2.04 
0.98 2.15 

Positive image 5.36 4.16 3.81 3.55 2.96 4.8 3.89 4.07 
Farming 
lifestyle 

6.53 2.98 3.55 3.29 10.32 19.66 
7.05 12.33 

Young farmers 
and 
inheritability 

2.05 4.1 8.03 4.46 3.65 5.12 
4.68 5.01 

 

*Cells without values represent priorities for which no producers in that group assigned any 
weight (poker chips). 
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on the number of mentions (25 out of 37) among producers and based on the weight assigned 

among the groups. Farming is a business, and being profitable is how the producers can maintain 

their land and operations, which is why it is natural to expect high priority on profitability. 

Several factors associated with profit were also high on the priority list. For example, financial 

stability was heavily weighted by both corn stover-harvesting producers and conservation 

producers, and it corresponded with frequent mentions about stable markets and prices across the 

producer groups. Yield, while an important factor, was not weighted or mentioned as frequently 

as profitability. It also was more highly prioritized by corn stover-harvesting producers than other 

groups. Some of the bioenergy producers explained the reason that they don’t prioritize yield is 

because yield does not necessarily equal profitability. If producers use no-till equipment or 

otherwise reduce inputs and production costs, a lower yield could be more profitable because of 

these lower operating costs.  

 

While profitability was an expected priority, the second most mentioned priority, 

independence and freedom, is seldom discussed in sustainability indicator literature. 

Independence signified that the producer could make independent decisions about operations and 

“be their own boss.” That indicator was highly ranked based on the number of mentions, but not 

based on the amount of weight assigned to the priority. One explanation could be that 

independence is perceived as inherent to farming but producers do not often connect that 

indicator to their specific farming decisions.    

 

A similar pattern of being a priority but not receiving a heavy weight in for decision-

making was a “positive image” of the farming practice. That priority emerged during interview 

conversations and was most frequently brought up by corn stover-harvesting producers, although 

less so by the other two groups. Nevertheless, when weighting factors that impact their decisions, 
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stover-harvesting producers did not assign much weight to positive image. That could, similarly, 

mean that they perceive the outsiders’ view as important but do not consider their decisions 

having an impact on that view.  

 

Several environmental factors were similarly prioritized, sometimes with differences 

between which priorities had been mentioned most frequently and the priorities that were heavily 

weighted for decision-making. For example, improving water quality and reducing erosion were 

frequently mentioned among conservation and bioenergy crop producers, and for that group these 

ideas were more heavily weighted for decision-making. Neither of those factors were mentioned 

much by corn stover-harvesting producers, but instead those producers discussed and assigned 

heavier weight to soil quality, possibly because of the more direct association with crop yield and 

profitability. 

 

Although economic and environmental factors were more frequently discussed as 

producer priorities, social sustainability indicators including farming lifestyle and its synonym 

“type of work” were also important priorities to the interviewees. Farming lifestyle was 

mentioned across producer groups and was one of the more heavily weighted social indicators for 

their decision-making. Interestingly, the corn stover-harvesting producer group mentioned that 

priority more frequently than the other two groups. One possible explanation of that difference is 

that all stover-harvesting producers were on the farms full-time and did not have additional jobs, 

while many of the producers in the conservation and bioenergy crop category had additional 

outside income. Several interviewees commented that planting perennial grasses is like a 

“producer retirement plan,” and thus may not be viewed as the sort of independent farming 

lifestyle that corn grain production and the associated stover harvest create.  



41 

 

Time and space views 

Besides the priorities themselves, the interviewees were asked what space and time 

boundaries for those priorities are most meaningful for them. In Phase 1 interviews, the producers 

were asked about what spatial and temporal boundaries they were in general most concerned. 

Most producers framed the spatial and temporal dimensions of their decisions in terms of impacts 

on other people and were less concerned about the time duration or spatial extent of impacts on 

ecosystems. Producers were not always able to provide a direct answer and mostly conceptualized 

those boundaries by discussing people that they interact with or they affect (for example, some 

cared about the US geographic boundary, because they interact and hear from the opinions of 

people from across the coasts and from cities; or were concerned about 50-year horizon because 

they care about their children and grandchildren having a successful future). The spatial and 

temporal concerns of each producer were not within “solid walls” but rather were conceptualized 

as ripple effects – some had large-area concerns, but those concerns were weaker than the small-

area concerns. The space-time boundaries of one specific producer are visualized in Figure 2-3, 

where the stronger concern is at 5 years and at the farm level, but there are still some general 

concerns at the county and 20-year levels. 
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While every producer’s space and time concerns are complex, we summarize the 

categories of space and time boundaries and the number of mentions for each of those category in 

Tables 2-5 and 2-6. The tables list the average number of mentions of that space-time boundary 

per interview, and list the normalized values of how frequently the boundary was mentioned by 

producer group. The counts and normalized values were calculated using equations (1) and (2).  

 

𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑛𝑜𝑛−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑠
 (1) 

𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
∑  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤

𝑇𝑜𝑡𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑟 𝑡𝑖𝑚𝑒 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤 ⁄

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑠
 (2) 

 

Figure 2-3:   Producer's space and time concerns (example of one corn stover-harvesting producer 

concerns). 
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Categorizing space and time priorities by producer groups suggests that there are some 

differences in what spatial and temporal boundaries were most important to the groups. State and 

county were the dominant spatial boundaries that the producers discussed across the groups, but 

the stover-harvesting group frequently mentioned the world scale, especially in the context of 

markets and trade. Interestingly, 20 and 50 years were the time-frames most discussed by 

producers, with the exception of the stover-removing producers, who mostly mentioned the 1-

year period.  

Table 2-5:   Categories and mentions of space boundaries. Normalized row values represent the 

percentage of mentions of the space-related codes in each producer category. 
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Farm 20% 17% 10% 25% 15% 25% 15% 23% 

County 20% 15% 24% 28% 22% 33% 22% 25% 

State 24% 23% 17% 18% 4% 7% 16% 19% 

Midwest 11% 9% 8% 11% 7% 13% 9% 11% 

The Gulf of Mexico 
and Mississippi 
River Basin 

12% 14% 11% 16% 2% 7% 9% 14% 

Country 8% 9% 15% 21% 10% 14% 12% 16% 

World 6% 9% 15% 26% 39% 32% 18% 27% 
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To gain an understanding of the space and time concerns beyond the general concerns of 

the individual producers, in Phase 2 the participants were asked to specify the space and time 

boundaries for each of the indicators. These results are presented in Table 2-7. Because fewer 

producers were interviewed per category in the Phase 2 interviews, we do not categorize the 

boundaries by producer type, but rather suggest which boundaries were most frequently 

mentioned and with what range. Note that the time average was calculated as the mode, or most 

frequently mentioned value, and not as an arithmetic average. In the case that all levels were 

mentioned equally among the participants, the median is selected instead of the mode. Most 

producers considered the entire range of the time and space levels in their answers, meaning that 

at least one factor mattered to them at a broader extent than their farm.  

 

Table 2-6:   Categories and mentions of time boundaries. Normalized row values represent the 

percentage of mentions of the time-related codes in each producer category. 
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1 Year 12% 18% 9% 18% 28% 31% 15% 23% 

2-3 Years 13% 31% 5% 8% 6% 10% 8% 19% 

5 Years 12% 21% 14% 14% 10% 17% 12% 17% 

10 Years 18% 14% 11% 16% 10% 18% 13% 16% 

20 years 14% 20% 31% 30% 23% 23% 23% 26% 

50 Years 22% 19% 20% 18% 19% 15% 20% 17% 

100 years 8% 13% 10% 13% 4% 7% 8% 12% 
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The results illustrate how diverse the spatial and temporal boundaries are across this set 

of priorities, with every level from 1 year to 100 years and from farm to world mentioned in the 

interviews. It is interesting that some heavily weighted economic priorities like profitability and 

yield had the smallest temporal and spatial boundary for producers, while other heavily weighted 

environmental factors had some of the largest spatio-temporal boundaries. These findings are 

consistent with the way Haden et al. (2012) reported sustainability strategies are conceptualized 

by farmers. Profitability can be considered a marker of adaptation towards the new climate, 

market and social conditions for their farm enterprise, while environmental indicators represent 

the mitigation of large environmental disasters like water pollution of an entire watershed, and 

demand action if the problem is perceived to be large. These results point to the complexity of the 

space and time concerns of the producers. While some producer groups categories have a 

characteristic space and/or time value for certain priorities as illustrated by the number of 

mentions in Tables 2-5 and 2-6, when looking across the full range of priorities, all interviewees 

discussed multiple spatial and temporal scales of concern.  
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Interviewees illustrated that their understanding of time is somewhat different from 

space, in that time is explicitly a continuum with a past and a future. When asked about the 

temporal extent that producers are concerned with, some discussed the range of time not only in 

one direction (present – to future as in next 5 years, 10 years, or 100 years), but in two directions, 

including the past and how it influences the current priorities and practices. Several participants 

discussed the past because of the heritage of their land and the perspectives of parents or previous 

farm operators, and they see themselves as a part of a historic flow of what was happening on the 

ground. Such a 2-directional axis of measurement is different from the spatial understanding, 

which is mostly in one direction of increasing extent (farm being the smallest extent and scaling 

Table 2-7: Time and space boundaries of producer's concern for each of the key priorities. 
 

Time  Space 

 Most 
frequent 

Range Most frequent Range 

Independence 10 10 – 100 Farm Farm – World 

Equal opportunity - - Midwest Midwest – World 

Financial stability 50 5 – 100 Farm Farm – World 

Profitability 1 1 – 50 Farm Farm – World  

Yield 1 1 – 10 Farm Farm – Midwest 

Diversification 10 10 – 100 Farm Farm – World 

Water quality 100 1 – 100  Gulf of Mexico and 
the Mississippi River 
Basin 

Local watershed – 
World 

Soil quality 100 5 – 100 Farm Farm – World   

Nature proximity 100 50 – 100 World Local watershed – 
World 

CO2 emissions 10 10 – 20  State State – Gulf of Mexico 
and the Mississippi 
River Basin 

Erosion potential 100 1 – 100 Local watershed Farm – World 

Wildlife presence 20 1 – 100  World County – World 

Food production 50 10 – 100 World US – World 

Rural 
development 

5 5 County County – State  

Positive image 50 1 – 100 US Farm – World 

Farming lifestyle 20 1 – 100 Farm Farm – World 

Land inheritability 100 10 – 100 Farm  Farm – US 

Young farmers 10 5 – 100  US Farm – World  
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all the way to the planetary boundaries.) This study focused on future-centered understanding of 

time, but it would be valuable to explore how explicitly considering the time dimension into the 

past might impact producers’ priorities. 

 

One of the challenges of looking at stakeholders’ space-time boundaries is that they 

change. Adams (1995) conceptualizes such change by comparing a person to an “amoeba”. 

Amoebas have a physical body and channels to explore the world, a social circle, and follow a 

specific hierarchy. Similarly, people interact with their surroundings through informal and formal 

channels, but also have “projects” that can span the initial personal boundaries. Farming can be 

perceived as one of those projects. Being project (farming) oriented implies that the person is 

dynamic and adaptive, which is required in pursuing a goal and a project whose context (market, 

community, climate) is changing. Similarly, Verbeke and Tung (2013) observe that stakeholder 

interests and positions change over time, which in this instance implies that bioenergy systems 

and solutions need to satisfy a range of interests if they are to grow and persist. Even during the 

interviews, several producers were mentioning how the priorities they were reporting are a 

function of their current state. We can expect that changing markets, weather, and other factors 

will change the boundaries, and that education and future experiences may shift boundaries of 

concern.  

Bioenergy implications 

Producer priorities and the temporal and spatial scales for which those priorities are most 

relevant can inform bioenergy research and education needs to improve the relevance of inputs to 

producer decision-making. Following the theory of planned behavior, which suggests that 

priorities reflect the actions that the stakeholder is likely to take, researchers can design decision 
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support tools and communicate indicators and their measures at the spatio-temporal scales that 

are most relevant to the stakeholders. Figure 2-4 illustrates how understanding the priorities and 

the boundaries associated with them can be connected to the bioenergy-related behavioral change 

that could follow. As some of the most relevant priorities were profitability or soil quality, 

producers across different groups can be expected to select cropping systems and design 

agricultural landscapes where biomass production strategies improve farm profitability and soil 

quality. The most frequently mentioned time and space levels relevant to decisions about these 

two priorities were farm-level for space, and either 1-year for profit or 100-years for soil quality. 

Thus, to provide useful input to producer decision-making, profitability and soil quality should 

include modeling and analysis at those scales, while recognizing that other scales will be relevant 

for some producers as well as other types of stakeholders such as community members or 

government officials. Explicitly analyzing and reporting indicators over time, including both 

trends and variability, can help producer decision-making and assessment tools more effectively 

bridge between long-term and short-term impacts. 
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The priorities that were most heavily weighted by producers can be expected to strongly 

affect producer behavior. Still, there were priorities that were frequently mentioned by producers 

during Phase 1 of the interviews but apparently not strongly associated with decisions and 

behavior based on the Phase 2 results. The difference between priorities that are frequently 

mentioned by producers, and those that are heavily weighted by them for decision-making, can 

point to a distinction of underlying values and business decision priorities. Priorities like creating 

a positive image, being independent, or encouraging young people to start farming are important 

to producers, but they may not consider these factors in their decision-making. Producers may see 

these factors as inherent in their activities, or they may not see the connection between their own 

farm operations and achieving these goals. Other factors, like profitability, preventing erosion, 

and improving water quality were both frequently mentioned as priorities and also heavily 

 

Figure 2-4:   Use of producer priorities, time and space boundaries to understand bioenergy 

sustainability and predict action towards bioeconomy. 
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weighted for farm decision-making, and for these priorities it is especially important to provide 

meaningful decision support. 

 

Beyond priorities and indicators that are frequently modeled quantitatively, including 

economic and environmental factors, the interviews indicate that descriptive goals like positive 

impact and independence are high on producer’s lists. These factors are more complex to quantify 

and compare in scenarios, but could signal the types of bioenergy crops the producers would find 

most attractive – those that improve their image to outside stakeholders, and that also allow them 

to stay independent through profitable markets and business success. Research and education 

about the environmental impacts of bioenergy crops can help provide producers with a better 

understanding of those impacts and help those who choose the more environmentally sustainable 

systems gain recognition for their work to help the environment. 

 

To the extent that bioenergy technology, cropping systems, and landscape designs 

address producer priorities and concerns, they can serve as attractive “new farming” strategies for 

producers and their communities. Perennial bioenergy crop producers can be similar to other 

niche producers, who are sometimes termed the “new American farmers” (Flachs and Abel 2019) 

because their interests and concerns are often distinct from conventional landowners. Currently, 

growers that supply biomass or grow perennial grasses are not a homogenous group; they have 

diverse motivations and backgrounds as illustrated within and among the three producer groups in 

this study. But there are common characteristics as well, and understanding and informing their 

priorities will help these new American farmers and producer-entrepreneurs (Nordin et al. 2005) 

be successful on their own terms, supporting themselves and their communities and enhancing 

rural development by adding a new element to the local producer “fabric”.  
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Study limitations 

All three groups of producers that were interviewed have adopted new agricultural 

practices – planting perennial grasses for bioenergy or conservation purposes, or harvested corn 

stover for bioenergy production. To understand the extent to which their priorities are more 

broadly shared, it would have been useful to compare the observed priorities of these groups to a 

“conventional” group of producers as categorized in Comer et al. (1999). Such a study would 

help inform individual decisions of farmers that have not tried the innovative bioenergy 

strategies, especially if their perspectives differ from the priorities found in this study. One might 

expect that the stover-harvesting group would be closest in their priorities, including their 

temporal and spatial outlook, to this “conventional” producer group that was not included in this 

study.   

Further research 

Because of the dynamic nature of producer perspectives, it would also be interesting to 

conduct a longitudinal study to learn whether the priorities and/or their most relevant time and 

space dimensions change. As perennial biomass planning can involve committing land to a 

decade or more of biomass growth, understanding how producer perspectives and decisions 

change over that period of time could lead to more robust agricultural landscape decision-making. 

Another area deserving of additional research is whether the spatial and temporal extents of these 

priorities is related to the producer’s feeling of agency and impact. A follow-up study that 

explores how the space-time-priority relationship is connected with perceived power of the 

producers in their decision-making could shine the light on why some priorities are weighted 
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heavily, and why others were frequently mentioned but apparently not as relevant to the decision 

process.  

   

Another topic that was frequently raised was improving the connections between 

landowners and land operators in landlord-tenant relationships. Many interviewees were 

concerned that there are many distanced landowners that do not have a strong connection to the 

land, and apparently are not interested in what happens to the soil, water, wildlife, and 

communities near their farms. Such concerns suggest that a separate series of interviews should 

be carried out with absentee landowners, who might have different concerns but might also be 

interested in growing bioenergy crops for a different set of goals and priorities.     

Conclusion 

Two sets of interviews were carried out with three types of producers: those that grow 

perennial grasses for conservation, those that grow perennial biomass for bioenergy markets, and 

those that harvest corn stover for bioenergy. The interviews identified key priorities, and for each 

of these priorities determined the spatial and temporal boundaries that these producers are most 

concerned about. Profitability, erosion control, water and soil quality were among the most 

mentioned and heavily weighted priorities across all the interviewees. Other priorities surfaced 

through the interviews that are not commonly measured or addressed in bioenergy models and 

simulations. Some of these priorities, including independence and a positive image, were of high 

concern to producers, although it was not clear how to incorporate them in the decision process. 

Expanding model frameworks to address these priorities could assist producer decision-making as 

they consider alternative cropping systems and agricultural landscape designs.  
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The initial Phase 1 interviews suggested that these three producer groups had different 

space-time priorities, with corn stover harvesters focusing on more local near-term issues and 

perennial grass being concerned about longer-term regional issues. However, the second set of 

interviews that questioned participants in more detail about the space-time boundaries for each 

priority indicated that all the producers considered multiple spatial or temporal boundaries, and 

for each producer the most important boundaries varied depending on the indicator. One 

implication of this finding is that decision models and tools intended to assist producer landscape 

decisions should be flexible to represent diverse spatial and temporal boundaries. A richer 

understanding of producer priorities and the associated space and time boundaries can help better 

inform the design of bioenergy systems, and help researchers more effectively collaborate with 

producers to establish bioenergy research and demonstration projects that address the indicators 

and measures most relevant to them.   



 

 

Chapter 3 

 

The economic case for perennial grasses: landscape designs for bioenergy 

production, water and soil quality create a financial opportunity at a subfield 

level 

Abstract 

Perennial bioenergy crops can not only improve water and soil quality and provide 

wildlife habitat but also be a more financially viable alternative to annual crops in low-yielding 

parts of crop fields. This study used a market assessment to project potential price levels for 

perennial biomass, paired historic yields with remote sensing imagery to model maize production 

at 10 to 30 m resolution, and applied crop production budgets to identify areas where switchgrass 

may be more profitable than maize. The analysis was run on three cases: two approaches for 

estimating corn stover yield paired with a high switchgrass yield, and one corn stover yield 

approach paired with a low switchgrass yield. Two Iowa watersheds were evaluated: the 

headwaters of the North Raccoon River watershed and the South Fork River watershed, located in 

Buena Vista and Hardin counties respectively. Averaged over the years 2013 to 2018, the subfield 

profitability of maize grain production ranged from a loss of $400/ha to a profit of $1500/ha. The 

results suggest that with biomass prices of $150/Mg (the high price scenario), perennial grasses 

could be more profitable on more than 80% of the cropland in these two watersheds in case of 

high switchgrass yield (10 Mg/ha) with or without corn stover harvest, or on more than 25% of 

the cropland in case of low switchgrass yield (5 Mg/ha). Even in the case of low-paying markets 

with biomass price of $50/Mg, between 6 and 22% of land depending on the scenario and 

watershed could be more profitably converted to perennial grasses. In this analysis, corn stover 

harvest was only profitable in the scenario when biomass price was $150/Mg.  These results 
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illustrate that perennial grasses can be a more profitable agricultural choice on marginal lands 

than annual crops, especially when there are biomass markets to incentivize the establishment and 

harvest of perennial crops. 

Introduction 

Perennial grasses are an agricultural management option that can help control nutrient 

and sediment runoff, provide wildlife habitat, and provide biomass for bioenergy (Asbjornsen et 

al. 2014, Zhou et al. 2014). Perennial grasses can include prairie grass mixtures or monoculture 

bioenergy crops like switchgrass or miscanthus. The benefits of introducing perennial crops have 

been illustrated in multiple studies. For example, field trials reported by Schulte et al. (2017) 

found that perennial grasses help reduce nutrient and sediment runoff and increase species 

richness and diversity. Anderson-Teixeira et al. (2009) use statistical analysis on the results of 46 

field trial studies and report that perennial grasses help build the soil organic carbon and thus 

improve the soil quality. Such positive qualities have encouraged some landowners to plant 

perennial grasses. 

 

Perennial grasses have been installed across the U.S. Midwest either as designated 

bioenergy crops for harvest or as unharvested conservation mixtures. Companies like FDC 

Enterprises (2020) or organizations like The University of Iowa (2020) have worked with farmers 

to establish switchgrass and miscanthus to pelletize and co-fire with coal in hospitals and schools. 

For conservation purposes, research, private and government programs have encouraged planting 

of perennial grasses. For example, the Conservation Reserve Program (USDA 2020) has 

subsidized farmers to plant perennial grass mixtures as pheasant habitat, pollinator habitat and 

many other biodiversity-related purposes. Iowa State University has worked with stakeholders to 
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establish perennial buffer strips on public and private land, with a goal to trap sediment and 

nutrients, as illustrated in the Science-Based Trials of Rowcrops Integrated with Prairie Strips 

(STRIPS) project in Iowa (ISU 2020). These projects were motivated by environmental quality 

goals rather than profitability. The present study will investigate whether these practices could 

prove economically beneficial as well.  

 

Profitability and available markets are some of the main pre-requisites that farmers 

consider as they evaluate the potential of perennial crops, as suggested by farmer interviews (see 

Chapter 2 “Producer Sustainability Perspectives”). There are two sides to the economic 

opportunity of perennial grasses – 1) prices available in the marketplace from companies that can 

use perennial grasses biomass for production, relative to the cost of that biomass production, and 

2) the lost profit, or in some cases the avoided loss, associated with annual crop production. This 

study included both sides of this economic question, but focused particular attention on the 

second factor which economists refer to as the opportunity cost. In field crop production this 

opportunity cost can either be positive or negative depending on commodity prices as well as the 

productivity of soil and other biophysical inputs and can also be effected by crop insurance and 

subsidies that may be available for conventional commodities and not biomass. Several studies 

have shown that planting perennial grasses on land that is economically marginal for annual crops 

can benefit farmers and landowners. For example, the Bonner et al. (2014) analysis found that up 

to 85% of corn producing fields in Hardin county Iowa may be losing money in some years, and 

these losses are a function of both the commodity price and biophysical productivity. In Bonner et 

al. (2014), the authors modeled crop yield based on soil quality indices. Also in Iowa, Brandes et 

al. (2018) take a similar approach of using a combination of biogeochemical and agroecosystem 

models to predict yield for the entire state. Their study found that 12 or 37% of Iowa cropland can 

be economically converted into switchgrass depending on the threshold of conversion. Finding 



57 

 

such high percentages of cropland area that may be more profitable for perennial biomass than 

annual grain crops, especially in productive Iowa agricultural landscapes, indicates that perennial 

crops can create a financial opportunity for farmers.  

 

Contrary to the common assumption that sustainable farming practices require public or 

private investment with little chance of any financial return, some companies and farmers have 

proposed and demonstrated ways to create commercial products from crops grown for 

environmental benefits. For example, switchgrass grown as vegetative filter strip to reduce 

nutrient and sediment runoff to streams can also be used as animal bedding, serve as feedstock for 

cellulosic ethanol, or serve as a material for composite construction materials. These and other 

markets that use perennial and cover crops are now emerging in many regions of the U.S., 

providing options for additional profit from crops that also improve soil and water quality, and 

create pollinator and other wildlife habitat.  Market opportunities for lignocellulosic biomass 

resources are important because they could facilitate the adoption of perennial crops. The 

Conservation Reserve Program, while beneficial for the environment, provides both subsidies and 

constraints, and those constraints can limit whether the biomass can be harvested, if so how and 

when, and even prescribe which seeds should be in the mix. A market-driven biomass production 

system would allow the farmer to select how to manage the fields, allowing for freedom and 

independence as well as improve profitability – the most frequently mentioned priorities for 

farmers that grow biomass (see Chapter 2 “Producer Sustainability Perspectives”). 

 

The potential economic opportunity from perennial crops can be simulated using detailed 

subfield yield data coupled with cost and price assumptions for inputs and products respectively. 

Using the subfield crop performance data at 10 m to 30 m resolution can inform both the 

precision agriculture techniques that allow for a more efficient use of resources, and also the 
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larger question of field layout and design. Profitability indicators can be easily integrated with 

subfield analysis, with each subfield or each grid cell assigned a profitability value. Such detailed 

spatial analysis can be used to generate a profitability map, which is a practical decision-making 

tool for farm operators, and has previously been illustrated by Kitchen et al. (2005). With such a 

map, the decision-maker can identify zones of high and low profit and decide on agricultural 

management practices for different zones.   

 

This study uses subfield economic assessment with remote sensing-derived yield 

estimation, location-specific cost calculation and possible perennial grass market prices to 

evaluate the conditions where perennial grasses can be a profitable alternative to annual crops in 

the U.S. Midwest. Unlike other studies that calculate yield and profitability based on crop 

modeling simulations using soil types and/or soil quality indices, this research uses historic yield 

data based on satellite imagery and historic prices to anchor the analysis in recent lived 

experience. 

Methods 

Biomass markets 

Functioning biomass markets are one of the main assumptions for this profitability study. 

Diverse switchgrass markets that are currently available or are expected to become available in 

the future serve as the basis for price scenarios tested in the next section. Several of the industrial 

sectors that are likely to use biomass as feedstock are highlighted in Figure 3-1. Those markets 

are in no way exhaustive, but rather suggest how biomass could be valued based on the final end-

use and illustrate the variety of uses and range of prices. For a more detailed description of 
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biomass markets, please see Ruamsook and Thomchick (2014), who provide an overview of 

markets for lignocellulosic products including those listed in Figure 3-1 as well as mulch, biochar 

and animal feed products. Other potential future product streams for lignocellulosic biomass 

include commodity and specialty chemicals, as reviewed by Isikgor and Becer (2015).  

 

Potential biomass markets can be categorized as either currently existing or future 

markets, with the prices for future markets estimated based on the prices for current feedstocks 

with a similar form factor in the supply chain. Figure 3-1 illustrates which markets can be 

considered existing (green) and emerging (tan). Current markets include bioethanol production, 

bio-based power pellets, animal bedding, and as filling for erosion control socks. Many of those 

markets are niche opportunities or are currently part of pilot-scale productions, demonstration 

projects or specialized products within larger organizations. Erosion control socks help control 

sediment runoff and are commonly made with wood chips. Several companies started using 

switchgrass because it can still trap the sediment but are much lighter and easier to install as 

erosion control socks. The future markets for lignocellulosic biomass include biochemicals, 

animal feed, pulp and paper and composite material production. Bio-based chemicals are 

currently based on corn starch or lactic acid but could in the future be made from cellulose or 

hemicellulose converted into simpler sugars. Such processing could be possible in a biorefinery 

but would require process refinement. Composite materials primarily use ground wood or wood 

waste today, but several small companies already use wheat straw or hemp when making 

decorative and structural composite boards. Even though switchgrass is not currently used 

commercially for composite materials, it would be possible to use such feedstock.   
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The available and future biomass prices vary among the future and current markets. The 

highest-paying current market is the production of erosion control socks with the biomass price of 

$150/Mg (based on farmer and industry interactions). For both biochemicals and biofuels, the 

assumed feedstock price is typically $50-80/Mg based on assumptions in other bioenergy studies 

or the DOE Bioenergy Technology Office (Bioenergy KDF 2019). Technoeconomic studies on 

biomass pellets, which are used for biopower, have assumed a price of raw biomass as $55-

60.6/Mg (Haase 2010).  The prices on current animal bedding materials, which include straw, 

hay, or woodchips, vary between $70 and $130/Mg depending on quality (ISU 2020). Many 

companies producing composite materials and pulp and paper industry currently use woodchips 

or logs, with the raw woodchips being purchased for $60-130/Mg (Hoover’s 2017). Based on this 

wide variety of prices in existing and future markets, we select three price scenarios for biomass 

at the farm gate: $50/Mg, $100/Mg and $150/Mg of biomass.   

 

Figure 3-1:  Switchgrass current and future markets. Markets in green are those that are currently 

operating and those in tan are emerging markets. 

60-150 
$/Mg 

50-80 
$/Mg 

50-80 
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Study case 

To understand the economic viability of planting perennial crops, it is important to 

compare the profitability of biomass with the opportunity cost of growing a conventional crop.  In 

the annual cropland-dominated study regions in Iowa, corn (Zea maize) is the most common 

current crop, while switchgrass (Panicum virgatum L.) is the most well-studied perennial biomass 

crop, so these two crops were selected for the comparison.  Switchgrass is a perennial grass that is 

a popular choice among bioenergy crop growers because it is a native crop to the U.S. Midwest, it 

is planted from seed and therefore is cheaper to establish than miscanthus (rhizomes) or willow 

(cuttings), and it can be harvested using equipment that is already commonly available on the 

farm for hay harvest. Corn is the major commodity crop in the U.S. Midwest and is either planted 

every year (“corn on corn”) or alternating with soybeans. Corn is generally more profitable than 

soybeans, so using it in this comparison is also conservative with respect to the opportunity cost 

for biomass.  

 

To evaluate the economic case of switchgrass compared to corn, we select two 

watersheds in Iowa - the Headwaters of the North Raccoon and the South Fork watersheds 

(Figure 3-2). Historical cost and price county averages for Buena Vista County (North Raccoon) 

and Hardin county (South Fork) were used for corn (Iowa Farm Bureau 2019, ISU 2018, USDA 

2019), and published crop production costs (Jacobs et al. 2016) and the previously described 

projected biomass market prices were used for switchgrass. The watersheds were selected 

because of their location on prime Iowa soils, with the expectation that if perennial grasses can be 

economically attractive on the highly productive land in Iowa, that case is even stronger on other 

lands in the state and across the Midwest. The watersheds are also located near cellulosic biofuel 

plants, justifying the bioenergy supply price assumption. 
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Yield, cost and profit analysis 

Profitability calculations are based on production costs, yield and the price that is paid for 

the crop. This section describes each element for corn and switchgrass economic assessment. 

Spatially-explicit subfield yield and economic calculations were done using the Google Earth 

Engine online software, which allows access and processing of the satellite data online on the 

Google server (Gorelick et al. 2017). Google Earth Engine (GEE) operates in JavaScript, so the 

code for the analysis is provided in that language (Appendix B-1).  GEE can be accessed using 

the Python language through Google Collaboration website, and the code would need to be 

adjusted for the different semantics. For the data processing code provided in Appendix B-1, the 

only input variables needed besides the remote sensing data were the year of assessment, historic 

county yields, production costs and the price on the product.  

 

 

 

Figure 3-2:  Location of the Headwaters of North Raccoon River Watershed (top left corner on the 

map), and South Fork Iowa River Watershed (center of the map) in Iowa. 
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Two satellite data sources were used in this study – Sentinel 2A (accessed through the 

Google Earth Engine Copernicus collection1 ) and Landsat 8 (accessed through the Google Earth 

Engine Landsat 8 Tier 1 top-of-atmosphere collection with 8-Day Normalized Difference 

Vegetation Index (NDVI) composite2 ). Sentinel 2A is a satellite sensor launched by the 

European Space Agency’s Copernicus Program in 2015 and has a comprehensive coverage of 

spectral bands, which is why this study uses these data for 2016-2018 yield evaluation (Gascon et 

al. 2016). One of the reasons for the installation of the Sentinel sensors was to monitor the change 

in vegetation in Europe, so it is well suited for yield estimation. The smallest spatial resolution of 

the data collected by the Sentinel 2A is 10 meters for the visible and near-infrared bands. Visible 

red data with Sentinel 2A are captured at wavelength 664.5 nm, and the near infrared is at 835.1 

nm. Landsat 8 is a satellite program launched in 2013 and is the best public input data available 

for the 2013-2016 data (Roy et al. 2014). Landsat is a commonly used dataset, which already 

provides the calculated NDVI. Landsat 8 provides data at 30-meter resolution and captures the 

wavelengths of 640-670 nm for visible red, and 850-880 nm for near infrared light.  

 

The satellite yield data is a primary input to the subfield economic analysis. Agricultural 

producers care not just about average profit, but whether that profit is stable year over year. 

Having a large profit one year and losing money for the next two years is not acceptable for most 

farmers, who often have large loans on machinery or land purchases, as well as family living 

 
1 Sentinel-2 MSI: MultiSpectral Instrument, Level-2A as accessed through the Google Earth 

Engine Copernicus collection using web address https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_SR and ee.ImageCollection("COPERNICUS/S2_SR")  in the 

in-line code as in Appendix 1. 
2 Landsat 8 Collection 1 Tier 1 8-Day NDVI Composite as accessed through the Google Earth 

Engine Landsat 8 top-of-atmosphere collection using web address https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_NDVI and 

ee.ImageCollection("LANDSAT/LC08/C01/T1_8DAY_NDVI") in the in-line code as in Appendix 1. 
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expenses. The profitability in this study is averaged over 6 years: from 2013 to 2018, which is 

when the Landsat 8 and Sentinel 2A datasets are available.  

Landsat and Sentinel satellite data were used to estimate the crop yield based on the 

NDVI, which is the most widely used indicator for this purpose. NDVI represents the ratio 

between the visible red and near-infrared reflectance as in equation 1 and was first suggested by 

Rouse et al. (1973).  NDVI is a particularly useful estimate because it can be calculated from 

several satellites that cover the entire planet. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 , (1) 

Where NIR is the near-infrared reflection and Red is the visible red reflection. In this analysis, we 

used peak NDVI to estimate the subfield yield. We used Teal et al. (2006) to calculate the 

variability of yield within the field but corrected for the average county yield by changing the 

equation coefficient. 

𝑌𝑖𝑒𝑙𝑑 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × 𝑒3.3525×𝑁𝐷𝑉𝐼 (2)  

The “coefficient” variable adjusts for the average yield, while NDVI is the Normalized 

Difference Vegetation Index. NDVI signifies how healthy a crop is – the healthier the crop, the 

more near-infrared radiation it reflects. The resulting raster files with yield were used directly in 

the model. NDVI changes during the season, and peak NDVI was used in this study’s 

calculations. Peak NDVI yield was the foundation for profitability analysis. 

 

Corn stover, or the remaining biomass from corn grain harvest, is a possible feedstock for 

bioenergy and biomaterials production. The amount of stover that can be harvested sustainably 

has been suggested based on empirical and modeling studies. The present study uses two 

equations to estimate the possible corn stover yield. The first equation is based on the findings 
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from Wilhelm et al. (2007) (Figure 1A) where the possible corn stover yield can be estimated as 

in equation (3):  

𝑌𝑠𝑡𝑜𝑣𝑒𝑟 = 0.714 × 𝑌𝑔𝑟𝑎𝑖𝑛 − 5 (3) 

Equation (3) reflects the fact that the minimum amount of stover that has to remain on the ground 

depends on the subfield characteristics, which are inferred from the corn grain yield. 

  

 For the simplicity of use for agricultural producers, some researchers provide an estimate 

of how much corn stover should remain on the ground. Even though that number would depend 

on the exact field conditions like soil type and quality, some studies estimate that 6 Mg/ha of 

stover remaining on the ground is typical and has been recommended as a general guideline by 

Johnson et al. 2016. This estimate that a minimum of 6 Mg/ha stover should remain in the field 

was applied to the stover harvesting equation that was developed by Tan and Liu (2015) as shown 

in equation (4): 

𝑌𝑠𝑡𝑜𝑣𝑒𝑟 = 0.61 × 𝑌𝑔𝑟𝑎𝑖𝑛 + 2.4 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑡𝑜𝑣𝑒𝑟 𝑅𝑒𝑚𝑎𝑖𝑛 (4) 

Where Ygrain is the estimated corn grain yield, and Minimum Stover Remain is the rate in Mg/ha 

of how much stover has to remain on the ground to conserve soil quality, and for this study is a 

constant fixed at 6 Mg/ha. This study assumes that stover is harvested only if it is profitable to do 

so. Cost of stover harvest was estimated based on the assessment in Thompson and Tyner (2014). 

 

Switchgrass yield variation was simulated assuming a similar relationship as that between 

NDVI and corn yield, but with the magnitude of the variation reduced. Literature has shown that 

even though switchgrass yield also varies based on the temperature, precipitation and solar input, 

switchgrass yield is expected to be more stable than corn with respect to soil variability in Iowa 

and weather conditions in time (Varvel et al. 2008, Wang et al. 2010, Heaton et al. 2004), and this 

tolerance to a broad range of field and climate conditions is an important reason switchgrass is 
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often recommended for marginal land (Stoof et al. 2015, Wullschleger et al. 2010). As detailed in 

more detail in Appendix B-2, the variability in switchgrass was estimated as three times lower 

than that of corn. The resulting variability of the two crops is visualized as in Figures 3-3 and 3-4. 

Switchgrass yield was simulated for both high and low yield scenarios by applying this reduced 

variability to two average values: 10 Mg/ha as suggested in the literature for high-yielding land 

(Wang et al. 2010), and 5 Mg/ha average yield which represents the yield on marginal land. 

 

 

Figure 3-3: Visualization of switchgrass subfield yield variability. The assumed mean yield was 10 

Mg/ha, adjusted to reflect one third the subfield variability that was observed for corn grain in 2013. 

That corn grain yield variability is presented in Figure 3-4. 
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The second step in the profitability calculations is accounting for production cost and 

calculating the profitability given the revenue from the harvested product. Switchgrass 

establishment costs were amortized over 10 years. The detailed production costs and assumptions 

are described in Appendix B, Table B-5 and are based on Jacobs et al. (2016). Although the size 

of a perennial buffer has been shown to affect the efficiency of machine operations and therefore 

the cost of production (Griffel et al. 2020), machine efficiency was assumed to be a constant 80% 

for this watershed scale assessment. A preliminary demonstration of the impact of subfield size 

and shape on production costs for perennial grasses is included in Appendix B, Table B-8. In the 

data outputs in Table B-8, an efficiency factor was calculated from the actual subfield area and 

shape, and this factor was applied to the machinery costs and the labor costs, including the fixed 

and variable costs. This preliminary study suggests that the machinery turns were more efficient 

 

Figure 3-4: Visualization of corn grain yield as calculated from NDVR data using equation (2). 

Mean corn grain yield in the North Raccoon watershed for 2013 was 10.1 Mg/ha. Corn grain yield 

variability is provided for reference, and can be compared with the yield variability for switchgrass 

in Figure 3-3. 
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in a larger area, and thus less time was used for breaking and turns. This is especially true if a 

large subfield area is coupled with a small subfield perimeter. However, more accurate estimates 

of the impact of subfield designs on harvest efficiency for each field in the watershed was beyond 

the scope of this study. Because the total harvest costs were a small part of the overall 

profitability assessment, the 80% harvest efficiency assumption is unlikely to have significantly 

affected the results.       

 

Fertilizer application costs can vary from farm to farm as some of the agricultural 

producers are applying variable rate application of fertilizer to reduce excess fertilizer use and 

cost in low yielding areas of their fields (Nowatzke and Arbuckle 2016). Nevertheless, this study 

assumed a static fertilizer application rate because of the high average yields in the fields in the 

case studies. As reported in a study by Sawyer and Barker (2014), once the average yield reaches 

180 bu/acre, applying more fertilizer beyond the suggested 185 lb per acre does not significantly 

increase crop yield. 

 

In addition to the three market prices of $50/Mg, $100/Mg and $150/Mg, the 

Conservation Reserve Program (CRP) was also considered as a possible scenario. In the CRP 

case, the government program covers the perennial grass establishment costs, and also the rental 

cost if the land is rented.  This CRP scenario serves as a base case for calculating the performance 

of the field if the markets are not functioning, or if there is overproduction relative to market 

demand. The percent land that is unprofitable for corn production, and thus may make sense to 

plant perennial grasses for conservation through the CRP program, is indicated in the results 

tables.  
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Corn cost and price assumptions are based on published crop budgets and historical 

prices for corn grain, and estimated harvest costs and projected biomass prices for corn stover. 

These assumptions are listed in Appendix B, Tables B-1 and B-3. The tables include corn grain 

price (USDA 2019), corn establishment cost (Duffy 2013 and 2014, Plastina 2015, 2016, 2017 

and 2018), land rent price (Iowa Farm Bureau 2019), and corn grain subsidy, with the subsidy 

calculation described in Appendix B, Tables B-2 and B-4. The average per acre corn grain 

subsidy was calculated for each county based on the total dollar amount that was paid as corn 

grain subsidy in the county (EWG 2019) divided by the number of acres in corn (USDA 2019). 

The data are provided for Buena Vista and Hardin counties, because those counties are where 

most of the land of the Headwaters of North Raccoon River Watershed and South Fork River 

Watershed are located. The resulting profitability of corn is calculated by multiplying estimated 

corn grain and stover yields by historical corn grain price and the projected stover biomass farm 

gate price scenarios respectively, then subtracting the cost of corn establishment and grain and 

stover harvest (equation 5). Similarly, switchgrass profitability is calculated by multiplying 

estimated switchgrass yield and the projected switchgrass biomass farm gate price (switchgrass 

biomass is priced the same as the corn stover biomass in each biomass price scenario), and 

subtracting the cost of switchgrass establishment and harvest (equation 6).  

𝑃𝑟𝑜𝑓𝑖𝑡𝑐𝑜𝑟𝑛 = (𝑌𝑔𝑟𝑎𝑖𝑛 × 𝑃𝑔𝑟𝑎𝑖𝑛 − 𝐶𝑔𝑟𝑎𝑖𝑛) + 𝑖 × (𝑌𝑠𝑡𝑜𝑣𝑒𝑟 × 𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝐶𝑠𝑡𝑜𝑣𝑒𝑟) + 𝑛 × 𝑆 −𝑚 × 𝑅 (5)

𝑃𝑟𝑜𝑓𝑖𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑔𝑟𝑎𝑠𝑠 = (𝑌𝑠𝑤𝑖𝑡𝑐ℎ𝑔𝑟𝑎𝑠𝑠 × 𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝐶𝑔𝑟𝑎𝑖𝑛) − 𝑚 × 𝑅 (6)

𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =

{
  
 

  
 50, 𝐿𝑜𝑤 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑟𝑘𝑒𝑡 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (

$

𝑀𝑔
)           

100, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑟𝑘𝑒𝑡 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (
$

𝑀𝑔
)

150, 𝐻𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 𝑚𝑎𝑟𝑘𝑒𝑡 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (
$

𝑀𝑔
)       

𝑖 = {
0, 𝑌𝑠𝑡𝑜𝑣𝑒𝑟 × 𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 < 𝐶𝑠𝑡𝑜𝑣𝑒𝑟   
1, 𝑌𝑠𝑡𝑜𝑣𝑒𝑟 × 𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 > 𝐶𝑠𝑡𝑜𝑣𝑒𝑟  

𝑛 = {
0, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑢𝑏𝑠𝑖𝑑𝑦  
1, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑤𝑖𝑡ℎ 𝑠𝑢𝑏𝑠𝑖𝑑𝑦        

𝑚 = {
0, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑛𝑡  
1, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑤𝑖𝑡ℎ 𝑟𝑒𝑛𝑡        
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Where Y is yield, P is price, C is establishment and harvest cost, S is corn grain subsidy, and R is 

rent. Stover is only harvested and sold when the biomass price exceeds the costs of harvesting the 

stover. For each part of the field, the profitability of corn grain and stover is compared to the 

profitability of switchgrass, and a final map is generated where the more profitable crop is 

selected; the corresponding average profit and percent area in perennial grasses from such map is 

reported. Rent is included in the calculation in some of the scenarios to illustrate that even leased 

land might be economically suitable for perennial grasses and to represent the opportunity cost of 

the land. 

 

The cost, price and profit values are expressed in constant 2018 USD values. The actual 

costs for years 2013-2018 were obtained from crop budgets for the appropriate year and 

converted to 2018 equivalents using the Producer Price Index (farm products, commodity prices 

without seasonal adjustment) (Bureau of Labor Statistics 2020) so that the values could be 

compared and averaged. The Producer Price Index was selected because it represents the 

production purchasing power that is specific to the farming industry.  

 

The economic scenarios described above were evaluated to understand the cases where 

perennial grasses like switchgrass could perform well or not relative to corn, the dominant annual 

crop in Iowa. Such scenarios included cost variation in switchgrass and stover biomass price 

($50/Mg, $100/Mg and $150/Mg) and a conservation reserve program scenario as previously 

described, combined with other variables including whether the land is rented (or rent cost is 

included as the opportunity cost), and whether the producer is receiving corn subsidy. Two 

groups of scenarios are presented below for each watershed: the “best case” for corn, which 

assumes that the land is owned and that the producer has been receiving crop subsidies, and the 

“worst case” if the land rent is included and if no subsidy would have been received.   
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Results 

Economic Profitability 

The profitability of corn grain, corn stover, and switchgrass production varies within and 

between fields. Figures 3-5 and 3-6 are example model runs of field profitability of only corn 

production (both grain and stover harvest, where the stover harvest cost was less than the stover 

biomass price in a $/Mg basis and with a stover biomass price of $150/Mg) in 2013 to show the 

variability in profit across the watersheds. This simulation assumes that the corn grain subsidy is 

provided for corn and that rent is included, either as payment for farmers that lease cropland or as 

an opportunity cost for landowners. The resulting estimates of net profit, averaged over the years 

2013 to 2018 for different subfield areas across these two watersheds, varied between a loss of 

$400/ha and profit of $1500/ha. As seen in figures below, some part of the watersheds had 

dramatically higher profits than others, and some parts had significant net losses, supporting the 

need for the subfield spatial economic assessment. The high prevalence of acres losing profit 

(marked in red in Figures 3-5 and 3-6) could be in part due to droughts in 2013 (NOAA 2013). 

For other years considered for this assessment, there were some low-profit areas that may be 

explained by low corn grain price in comparison with the 2013 prices. The average net profit used 

to allocate subfield areas to corn or switchgrass was a multi-year average, and would have been 

impacted by any variables that affected yield as well as these yearly price variations.     
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Figure 3-5:   Example run of the corn profitability analysis for 2013 (corn grain with corn stover 

harvest at $150/Mg price scenario, without adding switchgrass) of the South Fork Iowa River 

watershed, including both land rent and corn subsidy. 
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This study compared the possible subfield profitability of corn grain with and without 

corn stover harvest to the projected profitability of switchgrass in that subfield. The results as 

presented below and detailed in Appendix B, Tables B-6 and B-7, list the average profitability 

over the years 2013 - 2018 in two example watersheds with both only corn production and 

production of both corn and switchgrass when parts of the field are converted to the perennial 

grass if it is produces more profit or has a lower loss than corn. Both the South Fork Iowa River 

watershed and the North Raccoon River watersheds are located on highly productive Iowa soils, 

yet the analysis shows over 10% of the land in these watersheds was unprofitable for corn grain 

production even when the scenario includes corn subsidy and excludes land rent without 

considering any revenue for biomass (the CRP scenario, Appendix B Tables B-6 and B-7). Such 

land that is unprofitable for corn could be converted to the CRP grass mixtures, but the amount of 

land for perennial grasses increases even more if the biomass can be harvested and sold.   

 

Figure 3-6:  Example run of the corn profitability analysis for 2013 (corn grain with corn stover 

harvest at $150/Mg price scenario, without adding switchgrass) of the Headwaters of the North 

Raccoon watershed, including both land rent and corn subsidy. 
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In all the scenarios that consider high switchgrass yield and $150/Mg biomass markets, 

switchgrass was more profitable on at least 69% of the land, and introducing switchgrass 

increases the average profitability of fields by at least $200/ha (Figure 3-7 to 3-10) when 

compared to annual crop production with corn stover harvest. Corn stover harvest increased 

average profitability only when biomass price was set to $150/Mg, as harvesting stover at a 

biomass price of $100/Mg or lower was unprofitable. Between 30% and 60% of acres across 

scenarios were more profitable with a switchgrass price of $100/Mg, but switchgrass was 

competitive on far fewer acres at $50/Mg of harvested biomass. Nevertheless, in all cases 

substituting switchgrass on the least profitable areas of these watersheds should equal or increase 

average farm profitability relative to the base case of corn. While conservation subsidies are 

sometimes more profitable for the farm than the lower price market incentives, a market-based 

approach would create spin-off companies and entrepreneurial producers who can take advantage 

of new markets as they emerge. 

 

Looking beyond the average profitability over the full time period studied (2013-2018), 

the percent land that would have been more profitable for switchgrass production, and also the 

regional and farm specific profitability, varied across the years. In 2013, despite the lower 

average yields, the corn prices stayed high which led to high profitability of most acres and a low 

percentage of the field where switchgrass would have been more profitable than corn. This year-

to-year variation is an important challenge to agricultural producers trying to maximize their 

profitability with switchgrass, as perennials take two or three years to get established. Thus, the 

percentage of acres cannot be adjusted in real time based on market price swings or weather 

variation. This reality may discourage farmers from planting switchgrass on cropland that is 

rarely less profitable, and focus on the subfield regions of fields where corn is unprofitable year 

after year.  Even though both South Fork River and North Raccoon watersheds are in similar 
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areas with average rent and yield, between 2017 and 2018, the percentage of land where 

switchgrass is more profitable than corn increased in North Raccoon River watershed, but 

decreased in the case of the South Fork Iowa River Watershed. Such results point to how the 

economic case for perennial grasses varies with location. 

 

 

 

Figure 3-7: Average profitability (2013-2018) in North Raccoon watershed given high switchgrass 

yield (10 Mg/ha) and corn stover yield calculation based on equation (3) given that rent is included 

in the profitability estimation, and the corn grain subsidy not included. 
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Figure 3-8: Average profitability (2013-2018) in North Raccoon watershed given high switchgrass 

yield (10 Mg/ha) and corn stover yield calculation based on equation (3), with rent not included in 

the profitability estimation, and the corn grain subsidy included. 

 

 

 

Figure 3-9: Average profitability in South Fork watershed given high switchgrass yield (10 Mg/ha) 

and corn stover yield calculation based on equation (3) with rent included in the profitability 

estimation, and the corn grain subsidy not included. 
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Results sensitivity 

The results of this study are subject to the modeling assumptions of the estimated 

biomass yields, which is why two additional cases were tested to understand the sensitivity of the 

results to yield change (Figure 3-11 to 3-14). A second corn stover yield model was tested for a 

difference (corn stover yield based on Equation (4)) and a comparison indicated that both 

equations produce similar average profitability results. That result suggests that setting a fixed 

amount of corn stover to remain on the ground can provide a useful estimate of the resulting 

average crop profitability.     

 

 

Figure 3-10: Average profitability (2013-2018) in South Fork watershed given high switchgrass 

yield (10 Mg/ha) and corn stover yield calculation based on equation (3), with rent not included in 

the profitability estimation, and the corn grain subsidy included. 
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Figure 3-11: Average profitability (2013-2018) in North Raccoon watershed given high 

switchgrass yield (10 Mg/ha) and corn stover yield calculation based on equation (4), with land 

rent included in the profitability estimation, and the corn grain subsidy not included. 

 

 

Figure 3-12: Average profitability (2013-2018) in North Raccoon watershed given high 

switchgrass yield (10 Mg/ha) and corn stover yield calculation based on equation (4), with land 

rent not included in the profitability estimation, and the corn grain subsidy included. 
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Figure 3-13: Average profitability (2013-2018) in South Fork watershed given high switchgrass 

yield (10 Mg/ha) and corn stover yield calculation based on equation (4) with land rent included in 

the profitability estimation, and the corn grain subsidy not included. 

 

Figure 3-14: Average profitability (2013-2018) in South Fork watershed given high switchgrass 

yield (10 Mg/ha) and corn stover yield calculation based on equation (4) with rent not included in 

the profitability estimation, and the corn grain subsidy included. 
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Similar scenarios were run assuming a low switchgrass yield (5 Mg/ha) with the original 

corn stover yield estimates. Such a scenario represents the yield that switchgrass could have on 

marginal land. The results suggest lower profit than the high switchgrass yield scenarios, 

especially for the $100/Mg and $150/Mg biomass price cases (Figures 3-15 to 3-18). 

Interestingly, across the scenarios, having a low switchgrass yield results in overall loss of 

average profitability, because the profit from biomass in the high-yielding switchgrass cases 

improved the average field profitability with or without corn stover harvest. 

 

 

 

Figure 3-15: Average profitability (2013-2018) in North Raccoon watershed given low switchgrass 

yield (5 Mg/ha) and corn stover yield calculation based on equation (3) with rent included in the 

profitability estimation, and the corn grain subsidy not included. 
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Figure 3-16: Average profitability (2013-2018) in North Raccoon watershed given low switchgrass 

yield (5 Mg/ha) and corn stover yield calculation based on equation (3) with rent not included in 

the profitability estimation, and the corn grain subsidy included. 

 

Figure 3-17: Average profitability (2013-2018) in South Fork watershed given low switchgrass 

yield (5 Mg/ha) and corn stover yield calculation based on equation (3) with rent included in the 

profitability estimation, and the corn grain subsidy not included. 
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Discussion and conclusions 

Agricultural producers can financially benefit from installing switchgrass on parts of the 

fields where corn is less productive. The extent of that benefit depends on the price of biomass, 

corn production cost relative to corn price, and whether the land is rented or owned. The results 

suggest that high-value markets of $150/Mg (currently represented by an actual market for 

switchgrass used in erosion control socks) can make switchgrass competitive with annual crops 

on over 70% percent of the land in the two studied watersheds. Converting that land to 

switchgrass could increase average farm profitability in those counties by over $200/ha, 

suggesting that perennial grasses not only contribute to conservation efforts but also can improve 

the “bottom line”.  If just 20% of land currently farmed as corn is converted to switchgrass as 

 
 

Figure 3-18: Average profitability (2013-2018) in South Fork watershed given low switchgrass 

yield (5 Mg/ha) and corn stover yield calculation based on equation (3) with rent not included in 

the profitability estimation, and the corn grain subsidy included. 
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suggested by the CRP scenario or the lowest boundary of the $100/Mg assessment, with $200/ha 

increase in profit, that would result in additional $2.6 Million in the South Fork River Watershed, 

or $1.2 Million in the headwaters of the North Raccoon River watershed. Such increase in profit 

would support rural development, which was a high priority for producers as identified in the 

interviews in Chapter 2 “Producer Sustainability Perspectives”.   

 

Biomass markets are still under development, which is why there is a risk that farmers 

might not be able to find buyers for their entire supply of perennial grasses immediately after 

planting. For that reason, a scenario was included where switchgrass is established as a CRP crop. 

Even in such a case, perennial grasses can out-compete corn and improve farm profitability on 

many acres. This is especially the case when the CRP subsidy covers the land rent, in which case 

CRP establishment can be a more profitable option than selling switchgrass for $50/Mg or even 

$100/Mg. While more stable, the income from CRP would depend on the change in policy and 

might be questioned by farmer’s goal for independence.  

 

Frequently, the biomass price assumptions for bioenergy and biochemicals are $50/Mg-

$80/Mg (Bioenergy KDF 2019). The analysis indicates that at these lower prices, switchgrass is 

only rarely competitive with the conventional crops, especially on rented land. The analysis 

indicates that to motivate the conversion towards more perennial grasses, higher value-added 

markets need to be encouraged, with a higher profit or some other grower payment mechanism 

for biomass, bioenergy and biochemicals.  These findings are similar to the production cost 

analysis of Hansen et al. (2019), which estimated that switchgrass production costs can vary 

between $58/Mg and $74/Mg in integrated landscape designs.  
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The spatial distribution of the economic analysis at 10 m to 30 m scale indicates that corn 

profitability is variable not only between fields but also within fields, with many of the 

unprofitable areas along streams and in headlands. In the case of stream buffers, planting annual 

crops in floodplains can be challenging for not just the crops, but also the machinery to access the 

stream-side property in wet times of the year. Figure 3-19 presents a zoomed-in map of the 

profitability of fields and illustrates that the economic returns vary both among fields in a farm 

(for example, the highly profitable field in the bottom-right corner as compared to less profitable 

field in the center of the image), and within fields (for example, the low and high-profitability 

zones in the left corner of the image). This variability can be explained by topology, nutrient 

application rates, soil types, and other biophysical factors (Jin et al. 2019). Several studies use 

crop productivity prediction models to explain the variability in yield predictions. For example, 

Maestrini and Basso (2018) suggest that the variability could be linked to the topography–rain 

relationship, represented by the topographic wetness index. Similarly, Lobell and Azzari (2017) 

observe that yield variability is most likely caused by the soil and landscape differences, even 

more than field management. The goal of this study was not to understand the mechanisms that 

cause specific parts of the landscape to be marginal and thus suitable for switchgrass growth, but 

rather to evaluate whether switchgrass can be an economically feasible crop given the actual corn 

yields on Iowa landscapes. Nevertheless, understanding the causes for yield variability can help 

predict future marginal lands and suggest the long-term positioning of perennial crops. 
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Subfield variability in yield, and the resulting “patchiness” of planting perennial grasses 

in small and awkward shapes, can be a problem for field operations. This is a problem that can be 

solved using optimization, examining opportunities for efficiency and synergies both in space and 

time. For example, if switchgrass is planted in the headland spaces, but that space is used for 

machinery turns to plant and harvest annual crops while the switchgrass is still growing and 

before it is harvested, the switchgrass biomass quality would be greatly reduced. Machine-

induced soil compaction can be one of reasons for yield reduction in the headlands, and planting 

perennial grasses on the edge of the field could just shift that compaction deeper into the field 

over time if annual crop machinery is not allowed to drive over the grasses. To avoid this 

problem, the farmer could drive over the perennial grasses, but that would reduce biomass quality 

if the corn field harvest occurred before switchgrass harvest. On the other hand, harvesting 

switchgrass from the perimeter of the field before the corn harvest would avoid that problem, and 

could provide a more digestible grass biomass that may have higher value. A spatial and temporal 

 

Figure 3-19: Zoomed-in image of field profitability for 2013 (corn grain with corn stover harvest 

at $150/Mg price scenario, without adding switchgrass) of the Headwaters of the North Raccoon 

watershed, including both land rent and corn subsidy. 
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optimization of the landscape design that includes considerations of the harvesting time could 

generate a possible solution, and represents one promising avenue for further research.  

 

Because the placement of perennial grasses is an optimization problem not only in space, 

but also in time and can affect biomass quality, it would be useful to produce a farmer’s guide 

that connects biomass quality (e.g. ash, moisture, carbon content), harvest timing and the markets 

that such biomass could suit. As discussed in the text above, different markets require different 

quality material, and differentiated quality characteristics could translate to different prices for the 

producer. For example, planting switchgrass that is later used for animal bedding might be 

appealing to one farmer as it might require lower quality, but higher volume. Another farmer, 

more interested in a smaller but higher-value biomass product, might consider producing pet 

bedding or biomass for pharmaceuticals. Such differentiation by quality and market will help this 

emerging industrial sector implement the “biorefinery” concept, which, similar to that of an oil 

refinery, directs different fractions of oil towards different purposes both because of the diverse 

quality of the material and also because of the diverse markets available. 

 

Limitations of this study include the use of historical data, which is fixed over a particular 

period of time that is already past.  In this analysis we evaluate the potential for switchgrass 

planting for the years 2013-2018. Even though there are some trends over these years, the time 

period is too short to be confident those trends reflect climate change. Yet many stakeholders 

would like to predict where the unprofitable areas will be in the future as a result of climate 

change. Further studies can evaluate how climate change will affect the definition of marginal 

lands, be that through flood, drought, or timing of weather events.  
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The results of this study suggest that a major part of Northcentral Iowa cropland can be 

economically converted to switchgrass. High-value functioning biomass markets can improve the 

adoption of perennial grasses, but they will also need to be high value to provide sufficient 

incentives to convert considerable areas of cropland. With biomass prices of $150/Mg, 

switchgrass could be economically viable on over 80% of the land in the two watersheds 

evaluated. Northcentral Iowa cropland is a high producing area for corn, so these results indicate 

that switchgrass can compete with corn on even high-quality soils.  Similarly, switchgrass could 

make a compelling economic case that land with steeper slopes and poorer soil should also 

consider perennial grasses as an economic alternative to annual crops. Such conditions were 

estimated in the 5Mg/ha switchgrass yield scenario representing marginal land yields. By using 

subfield yield data derived from satellite imagery, and connecting those data with county-level 

estimates of crop yields, market prices and production costs, this study extends beyond prior 

research that used soil type-based yield and profitability estimates to make a case for perennial 

grasses. 



 

 

Chapter 4 

 

Multiple criteria spatial suitability analysis for sustainable crop allocation 

using stakeholder priorities 

Abstract 

Integrated landscape management designs that compare and reallocate annual and 

perennial crops to maximize utility offer a new way to both improve producer prosperity and 

reduce the negative environmental footprint of agricultural systems. Selecting the right design is a 

complex task because the decision problem is spatial and involves countless possible 

combinations of crop arrangements. Furthermore, many factors are considered in farm decision-

making, each with different levels of priority, making the spatial decision problem also a multiple 

criteria optimization problem. This study demonstrates the use of stakeholder input for multiple 

criteria decision support by considering the real priorities that were found during producer 

interviews. By consulting with the stakeholders in advance about which decision variables are 

most relevant, having the stakeholders weight each of those variables, and using an algorithm to 

generate a new field cropping system design that is operable using agricultural machinery, the 

developed optimization framework proposes possible farm field designs that incorporate 

perennial grasses into the landscape. The framework allows producers to redesign agricultural 

landscapes to be valuable in ways that are most important to them. This study applies this 

framework to several demonstration cases based on different weighting functions of agricultural 

producer priorities. Using soil and other properties from a real field, the model optimized the 

design of that field for subfield layouts that include a corn-soybean rotation and switchgrass, with 

the designs based on spatial analysis of 15 weighted sustainability indicators that were identified 
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from producer interviews. This approach allows for modeling the most meaningful decision 

factors and including them in field-scale decision-making, even though some of those attributes 

are seldom modeled at a subfield level and are challenging to represent by a spatially explicit 

proxy. The decision support framework developed by this study offers a way to generate field 

layouts that maximize the total sustainability utility of the agricultural landscape, while making 

the layout operable for agricultural machinery. The distinct cases evaluated using the framework 

illustrate that for some combinations of producer values and priorities, the agricultural landscape 

would be transformed into a more perennial grass-dominated landscape.  

Introduction 

Agricultural decision-making is a complex task. Many factors influence the producer’s 

decision-making process, which is specific to the location of the farm, available equipment and 

experience, local and national markets, and the planning time horizon. Decision support and 

spatial analysis techniques can assist in agricultural decision-making to propose farm landscape 

arrangements that satisfy producer priorities, and consider the impact of their decisions on 

surrounding communities and the environment. Such techniques are intended to help agricultural 

producers by leveraging both generalized and site-specific research findings, as well as the 

producer’s farm- and field-specific knowledge. The resulting knowledge co-production (Bovaird 

2007) can be leveraged by engaging the stakeholders in the decision support development from 

the onset of the project. As a result, the stakeholders not only verify and select a preferred 

scenario from the decision support system but participate in scenario generation. Designs, 

scenarios and solutions that arise through stakeholder collaboration initiated at the beginning of a 

project are more likely to be applicable and actually implemented than if proposed from the top 

down by researchers or policymakers (McGuinness and Slaughter 2019).     
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Stakeholder input has been solicited previously for decision support design. For example, 

Stillwell et al. (1983) compared various methods to elicit weights using a bank credit assignment 

as an example. They illustrated that different elicitation methods could lead to similar decision 

solutions, even when compared to equal weighting (setting the same weight on all priorities 

without stakeholder input). Even though equal weighting might have a similar outcome, involving 

stakeholders in determining which priorities are most relevant, and allowing them to set the 

corresponding weight of that priority, may increase stakeholder empowerment and increase the 

likelihood of implementation. 

 

Effective involvement of stakeholders is a function of both the stakeholder engagement 

method and the modeling approach. Voinov and Bousquet (2010) review the different ways 

stakeholders can participate in modeling and report that multi-criteria optimization is one of the 

effective modeling methods for participatory decision analysis. Many of the existing land use 

decision tools recognize the complexity of stakeholder decisions and apply multi-criteria 

optimization techniques, including multi-objective or multi-attribute optimization. Such methods 

are designed to optimize a solution towards multiple goals, either illustrating the tradeoffs 

between each of the objectives or by normalizing a set of different indicators and weighting or 

ranking them to simplify the problem (Bartolini et al. 2007, Cao et al. 2011, Cisneros et al. 2011, 

Groot et al. 2018, Klein et al. 2013, Parish et al. 2012). Multiple criteria decision analysis can be 

used to compare a variety of alternative scenarios and, based on the weighting of the factors by 

the decision-maker, suggest which alternative is best (Huang et al. 2011). This ranking can be 

based on the sum of weighted utility values for each indicator, calculated as the outcomes of each 

scenario, essentially showing how much total benefit (or net benefit, if some functions are 

negative) the scenario will bring. This study uses a multi-criteria decision analysis framework 
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because of the diversity of agricultural criteria (sustainability indicators) that stakeholders 

consider as priorities. 

 

Utility functions can be used to interpret and evaluate how acceptable a level of decision 

variables is, or in this case – how acceptable the performance of sustainability indicators is. Using 

the utility approach has been described in a fundamental work by Bernoulli (1954) and has been 

widely used in multiple criteria decision analyses (Wallenius et al. 2008). The performance of 

decision variables can be expressed as a utility value where the weighted indicator values are all 

in common units. For example, profitability is calculated in USD and wildlife in diversity index 

values. Comparing or combining the two measures in a single objective function would be 

impossible without conversion factors that set the units to a consistent, normalized range (e.g. 

zero to one) within which these variables are calculated. Utility functions serve that role of 

normalizing the units of the different sustainability indicators, by assigning the upper and lower 

bounds of an indicator’s “acceptable” levels and the type of behavior of the function between 

those levels. Weighting can be paired with such utility functions to prioritize some of the 

indicators’ performance for the final decision. Because “acceptability” and utility are stakeholder-

dependent, ideally utility functions should be defined by the user as should the underlying 

sustainability indicators (Stosch et al. 2019). While stakeholder-defined utility functions are 

possible in the model developed in this chapter, pre-set utility functions are also available to 

simplify the decision support process.  

 

Design and decision-making about agricultural fields and cropping systems is a spatial 

problem, meaning that the decision solution has to be spatially explicit to account for variations in 

input and output variables at a subfield level. Spatial optimization problems have a large solution 

space – for example if a 5-acre field is split into a grid of 30x30 meters, that results in 
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approximately 22 cells. If just two possible land use options are compared, there are 222 = 

4,194,304 possible arrangements of cells. If the size of each cell is 30x30 meters, the 100x100 

grid would represent a field or farm of 900ha. On average, the corn stover harvesting producers 

interviewed for this study farmed over 1,200ha, so a useful spatial decision support tool needs to 

be able to process a very large number of possible solutions. For this study, raster spatial 

processing was selected as an efficient way to process subfield data, where “raster” is a way to 

represent spatial data as independent cells in a grid. 

 

In addition to the large size of the decision space, spatial problems are inherently 

transdisciplinary and require multicriteria assessment techniques, with multiple utility values 

calculated for each cell. Ferretti and Pomarico (2013) have used the term, “multicriteria-spatial 

decision support systems” to discuss ecological land suitability analysis. Because of the 

complexity of spatial decisions, multicriteria spatial decision problems have been addressed using 

heuristic methods for spatial optimization (Fotakis et al. 2012, Li and Yeh 2005, Stewart and 

Jenssen 2014) or using site suitability analysis (Akinci et al. 2013, Ferretti and Pomarico 2013, 

Lovett et al. 2009, Pulighe et al. 2016). Site suitability analysis is the approach that is taken in this 

study. 

  

The goal of this study is to develop a decision support framework that utilized 

stakeholder input to co-generate an agricultural decision that helps improve farm sustainability, 

where choices are made between installing a perennial grass (switchgrass) or rotation of annual 

crops (maize/soybean) in different parts of a field on highly productive farmland in the US 

Midwest.  Such a decision framework can be applied to other spatial natural resource problems.   
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Methods 

A producer decision support framework for crop allocation was developed to optimize 

weighted priorities applied to an agricultural field with defined priorities and market conditions. 

That framework consists of several key components such as stakeholder input, a model to 

evaluate the sustainability performance of a crop choice and the corresponding utility of such 

crop choice, and a spatial analysis algorithm that uses the sustainability evaluation to produce a 

crop suitability map that is further improved by “smoothing” the field, or making it less 

fragmented and more operable for agricultural machinery. Stakeholder engagement was carried 

out as a series of agricultural producer interviews and a gamified discussion on indicator 

priorities, targets and weighting functions by individual producers. To demonstrate the approach, 

an example field was divided into a grid of cells (represented by spatial raster files), and each cell 

was evaluated for the suitability of annual and perennial crops based on the utility value that the 

cell receives. These suitability results assigned crops to each cell based on a deterministic 

calculation of the utility scores were then adjusted to eliminate clusters of pixels below a 

minimum subfield size. A “smoothing” algorithm was run on these deterministic land suitability 

results, which produced field layouts that were efficiently operable with agricultural machinery. 

Stakeholder priorities elicitation 

Chapter 2 of this dissertation discussed in detail how indicators were selected and 

weighted during stakeholder interviews. This chapter provides a brief summary and details how 

the indicators and weights for indicators were quantified to optimize crop allocation across 

agricultural landscapes. 
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Modeling is a simplified representation of reality, which is why selecting the key decision 

variables is of prime importance to make sure the model characterizes the system it is trying to 

represent in ways that are relevant and meaningful to the users. The stakeholders were iteratively 

consulted (Figure 4-1) to determine the relevant sustainability indicators, thresholds, and 

weighting functions. In the first round of interviews 34 Iowa producers from across the state 

participated. These producers included participants who have established perennial crops as part 

of the Conservation Reserve Program, others who have planted miscanthus and/or switchgrass for 

power generation, and yet others who have harvested corn stover for a cellulosic ethanol plant. 

An initial list of indicators was generated based on those producer interviews. Participants were 

asked about their concerns in agriculture and what priorities they have for agriculture and 

farming. Based on the most frequent answers and a literature review of other stakeholder-based 

indicator selections, 18 indicators were selected that cover the social, environmental and 

economic dimensions of agriculture impacts, collectively referred to as sustainability indicators.  

 

Sustainability indicators were verified, quantified and weighted during Phase 2 of the 

interviews. The producers were provided with cards illustrating the 18 priorities generated from 

the initial interviews, additional cards representing time and space boundaries that could be 

relevant to those priorities, and 100 poker chips to distribute among priorities to assign relative 

weights. Figure 4-2 provides several examples of how producers interacted with materials. 

Agricultural producers indicated which sustainability indicators were most relevant to them. 

When asked how they would measure those indicators, they matched each indicator with the most 

meaningful space-time boundaries, identified specific thresholds for which the indicator is at an 

acceptable level, and then weighted each of those personally relevant indicators.     
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Figure 4-1:  Continued engagement of stakeholders to generate decision criteria and to verify the 

applicability of the indicators. Stakeholders were engaged iteratively in the study to verify the 

selected indicators. 

 

 

Figure 4-2:   Output of producer interaction with decision variables (cards with sustainability 

indicators), priority weights (poker chips) and space-time boundaries. 
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Stakeholder priorities 

The indicators that were selected based on stakeholder interactions are presented in Table 

4-1, together with the spatial measures for those indicators and the corresponding utility 

calculations. An initial list of 18 sustainability indicators was generated from the Phase 1 of the 

interviews (column 1 in Table 4-1). That list was refined during the second phase of the 

interviews, with the second column in Table 4-1 indicating those sustainability indicator 

categories that were modified after the interaction with producers. Some of the indicators were 

not clear to the participants or were not relevant as part of the discussion. Based on their 

feedback, the researcher reduced the indicator list to the 15 most relevant indicators. When asked 

whether any priority was missing, most of the producers replied that the list of indicators covered 

the most relevant concerns.  

 

Many of the producers discussed how the indicators are connected and pointed out that it 

is challenging to separate and isolate priorities among them. That was especially the case with 

wildlife presence and nature proximity – usually wildlife was the perceived “Pristine Nature”, so 

those factors were merged into one category “Wildlife and Pristine nature”. Similarly, “Young 

Farmers” and “Land Inheritability” were connected in many of the producers’ minds, so these 

two factors were merged as “Young Farmers and Inheritability”. For most people, inheritability 

was related to whether young farmers would like to take over the production; young farmers 

staying in the area was in participants’ words connected to the amount of opportunity in the area 

and the profitability of the farm, which was also related to the inheritability of the farm.   
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Table 4-1: Sustainability indicators included as decision variables and their measures in the 

decision support framework. The first column lists the 18 indicators initially selected through 

farmer interviews; the second column lists any changes in the indicators as a result of Phase 2 of 

the interviews; the third column explains the measurement approach for each of the indicators as 

based on farmer interview and literature; the fourth column describes the grain at which the input 

data were used. 

Indicator 
identified after 
interviews 
(Phase 1)  

Indicator 
after 
interviews 
(Phase 2) 

Measure Spatial grain 

Independence -same- Ratio of profit from subsidies 
to the profit from competitive 
markets 

Indicator by crop 
type 

Equal opportunity (excluded)   

Financial stability -same- Profit risks based on the 
variability of income due to 
markets, weather 

Indicator by crop 
type 

Profitability -same- Profitability based on yield 
and crop budgets 

Subfield (10 m) 

Yield -same- Annual crop yield. Calculated 
using Google Earth Engine 
imagery 
 

Subfield (10 m) 

Diversification -same- Number of markets based on 
the market assessment 

 

Indicator by crop 
type 

Water quality -same- Nitrate runoff. Based on the 
Sustainable Landscape 
Design team models  

Subfield (by soil 
type, modeled) 

Soil quality -same- Soil organic carbon (SOC). 
Based on Sustainable 
Landscape Design team 
models  

Subfield (by soil 
type, modeled) 

Nature proximity Wildlife and 
pristine nature 

Probability assumption based 
on literature by crop 

Indicator by crop 
type 

Wildlife presence 

CO2 emissions -same- CO2 equivalent emissions 
(kgCO2-e). Emissions by crop 
based on the FEAT model 
(Camargo et al. 2013) 

Indicator by crop 
type 

Erosion potential -same- Erosion rate. Based on 
Sustainable Landscape 
Design team models 

Subfield (by soil 
type, modeled) 

Food production -same- Percent area under food 
production 

Indicator by crop 
type 

Rural 
development 

-same- Number of jobs assumption 
from the literature 

Indicator by crop 
type 
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Sustainability indicators were not only connected between and among each other for 

many of the interview participants, but also did not need to be categorized into sustainability 

dimensions (e.g. environmental, economic, social) for producers to confidently assign priority. 

One producer categorized the indicators by what can be interpreted as the three dimensions of 

sustainability and then assigned weight to categories of indicators rather than individual priorities. 

All other participants assigned weight to stand-alone sustainability indicators, and while many 

discussed how the indicators can be correlated, that did not have the same importance. For 

example, yield and profitability are correlated, yet many producers specified that those indicators 

are not the same thing because of the different input costs. Because of the possible interrelation 

between the indicators, one has to be cautious of double-counting the factors that are closely 

linked. Nevertheless all factors that were relevant to the decision-makers were included in the 

tool to allow for cases when some stakeholders might chose assign weight “zero” to some of the 

indicators and others would not. As a result, the indicators that are included in the decision 

support are based not on the simplicity/complexity required to model them, but on the meaning 

they have to stakeholders.  

 

The indicator “Equal Opportunity” was not an indicator that resonated with many 

interviewees. Even though it was described as, “having equal opportunity and access to markets 

and suppliers for smaller producers as for larger producers” and was placed on the list because of 

Positive image -same- Score assumption for 
consumer -approved 
practices 

Indicator by crop 
type 

Farming lifestyle -same- Score assumption for the 
ability to maintain a family 
operation 

Indicator by crop 
type 

Land inheritability Inheritability 
and young 
farmers 

Land value as a function of 
soil management and profit 

Subfield (10 m) 

Young farmers 
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the multiple mentions by producers during Phase 1 interviews, in Phase 2 many understood it as 

referring to equal opportunity hiring for the people who work on their farm. Some producers also 

mentioned that equal opportunity in the marketplace is something they work to make happen but 

is not necessarily a factor they consider in their farm operations. A producer gave an example that 

this priority is becoming less of an issue over time. With increasing communication in the digital 

age and being in a network of producers in the Midwest, this participant stated that producers can 

now find the best access and best market deals for seeds, fertilizer and equipment through sharing 

with peers. Based on this stakeholder feedback and confusion about the multiple meanings 

associated with this term, this factor was removed from the decision support system. 

 

Prior interviews showed that many stakeholders including agricultural producers are 

concerned about environmental quality, and these concerns were expressed in select sustainability 

indicators. Their environmental concerns can be summarized as “to prevent erosion, improve soil 

quality, improve and maintain water quality, provide habitat to wildlife and observe that wildlife, 

and reduce CO2 emissions.” Table 4-1 summarizes the ways these environmental indicators were 

evaluated in this decision support model.  

 

Social factors were one of the major concerns agricultural producers had. Many of these 

factors are difficult to measure, which is one reason they may have been left out from most 

previous agricultural sustainability studies in the literature. Nevertheless, because of the holistic 

definition of sustainability, sustainability assessment is often considered incomplete if social 

concerns are not addressed. Several social sustainability indicators are included in the current 

model. The social factors that were most relevant to the producers were rural business 

development, inheritability and opportunity for young farmers, growing healthy food, a positive 
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image of agricultural practices, and farming lifestyle. Table 4-1 describes some ways these social 

factors can be measured in the utility assessment.   

 

A farm’s bottom line is what keeps the producer in business. Naturally, economic factors 

were important to the producers that were interviewed. The five economic priorities that were 

important during the interviews were: profitability, independence, production diversification, 

yield, and financial and market stability. Table 4-1 describes the ways these various economic 

sustainability indicators were estimated for this analysis.  

 

Producers indicated that they found the interaction about their priorities engaging and 

found it interesting to use poker chips to place weight on priorities. Some participants suggested 

that such a hands-on method could be paired with an online tool that could output sample maps 

while still allowing the interactive work with cards and chips. Most participants said they would 

be ready to spend “a couple of hours” interacting with the decision-support, and offline hands-on 

game-like assignment of priorities with cards and poker chips allows for such flexibility because 

producers can assign their first weights, but then can reflect and come back to the cards and chips. 

Once these producer priorities and the sustainability indicators that best represent those priorities 

were weighted, the decision support framework could be used to calculate utility scores for the 

two cropping options on each part of a field. 

Data processing and spatial analysis 

The selected indicators and their measures are discussed in detail in Table 4-1 and 4-2. 

Input data included spatial indicators queried from raster or vector files, or as a constant for the 

entire farm when subfield data was not relevant or available. The latter included farm or county 
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estimates of measures like the number of crop markets, species richness and CO2 emissions. 

Raster files store spatial data information for every cell, which worked well for a field split into 

equally sized grid cells, while vector files store spatial data as shapes and lines based on 

underlying features like soil types. The output measures for sustainability indicators were 

generally spatially explicit and calculated based on spatial data inputs and the assumptions for 

non-subfield level indicators, and were converted into utility values using spatial data processing.  

Table 4-2: Spatial analysis inputs for the example cases run with the model, including the indicator 

measure units, upper and lower bounds of the indicator values and equations to calculate the utility 

of those indicators. 

Indicator 
identified after 
interviews 
(Phase 1 and 
2)  

Input details Measure 
unit 
before 
utility 
calculati
on 

Indicator value 
range in the 
example field 
 

Utility 
calculation 

Lower 
bound 

Upper 
bound 

Independence Assumption 
calculation based on 
subsidy calculations 
as in Chapter 3.  

Unitless $100/ha 
subsidy 
to 
$800/ha 
= 0.125 

$100/ha 
subsidy 
to 
$400/ha 
= 0.25 

𝑢𝑖𝑛𝑑
= 1 − 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓  
𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑟𝑜𝑚  
𝑠𝑢𝑏𝑠𝑖𝑑𝑖𝑒𝑠 

Financial 
stability 

Assumption 
calculation based on 
the profitability 
calculations. 

$/ha $1100/h
a to        
$2755/h
a = 
825$/ha 

$800/ha 
to      -
$400/ha 
= 
1200$/h
a 

𝑢𝑓𝑖𝑛
= 1

−
𝑃𝑟𝑜𝑓𝑖𝑡 𝑟𝑎𝑛𝑔𝑒

𝑀𝑎𝑥 𝑃𝑟𝑜𝑓𝑖𝑡 𝑟𝑎𝑛𝑔𝑒 
 

Profitability Modeled results 
based on crop budget 
assumptions as in 
Chapter 3. 

$/ha 275 1100 𝑢𝑝𝑟𝑜𝑓

=

{
 

 
𝐶𝑒𝑙𝑙 𝑃𝑟𝑜𝑓.

𝑀𝑎𝑥 𝑃𝑟𝑜𝑓.
,

𝑃𝑟𝑜𝑓 > 0 
0, 𝑃𝑟𝑜𝑓 < 0

 

Yield Modeled results 
based on Google 
Earth Engine remote 
sensing data.  

Mg/ha 0 14.7 
𝑢𝑦𝑖𝑒𝑙𝑑 =

𝐶𝑒𝑙𝑙 𝑌𝑖𝑒𝑙𝑑

𝑀𝑎𝑥 𝑌𝑖𝑒𝑙𝑑 
 

Diversification Assumption 
calculation based on 
the market 
assessment as in 
Chapter 3. 

# 
(Unitless) 

2 4 𝑢𝑑𝑖𝑣

=
𝐶𝑟𝑜𝑝 𝑀𝑎𝑟𝑘𝑒𝑡𝑠

𝑀𝑎𝑥 𝑀𝑎𝑟𝑘𝑒𝑡𝑠 
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Table 4-2 (continued): Spatial analysis inputs for the example cases run with the model, 

including the indicator measure units, upper and lower bounds of the indicator values and 

equations to calculate the utility of those indicators. 

Indicator 
identified after 
interviews 
(Phase 1 and 
2)  

Input details Measure 
unit 
before 
utility 
calculati
on 

Indicator value 
range in the 
example field 
 

Utility 
calculation 

Lower 
bound 

Upper 
bound 

Water quality Modeled results 
based on Sustainable 
Landscape Design 
team models 
(McNunn, 2018) 

lbN/ac/yr 0 144.88 𝑢𝑤𝑎𝑡

= 1 −
𝑅𝑢𝑛𝑜𝑓𝑓

𝑀𝑎𝑥 𝑅𝑢𝑛𝑜𝑓𝑓 
 

Soil quality Modeled results 
based on Sustainable 
Landscape Design 
team models 
(McNunn, 2018) 

lbC/ac/yr -1518 365.5 
𝑢𝑠𝑜𝑖𝑙 =

𝐶𝑒𝑙𝑙 𝑆𝑂𝐶

𝑀𝑎𝑥 𝑆𝑂𝐶 
 

Wildlife and 
pristine nature 

Assumption 
calculation based on 
Schulte et al. (2017) 
species diversity 
estimates 

Unitless 0.33 1 𝑢𝑤𝑖𝑙 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

CO2 emissions Modeled results 
based on the FEAT 
model (Camargo et 
al. 2003) 

kgCO2-
e/ha/yr 

2293 2612 𝑢𝐶𝑂2
= 1

−
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑀𝑎𝑥 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 
 

Erosion 
potential 

Modeled results 
based on Sustainable 
Landscape Design 
team models 
(McNunn, 2018) 

tn/ac/yr 0 50 𝑢𝐶𝑂2
= 1

−
𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝑀𝑎𝑥 𝐸𝑟𝑜𝑠𝑖𝑜𝑛  
 

Food 
production 

Assumption 
calculation based on 
the markets 
supplying the product 

Unitless 0 0.5 𝑢𝑓𝑜𝑜𝑑 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡  

𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

Rural 
development 

Assumption 
calculation based on 
the possible number 
of rural jobs 

# 
(Unitless) 

4 6 
𝑢𝑟𝑢𝑟 =

𝐽𝑜𝑏𝑠

𝑀𝑎𝑥 𝐽𝑜𝑏𝑠 
 

Positive image Assumption Unitless 0.4 0.8 𝑢𝑖𝑚𝑔 =  𝑆𝑐𝑜𝑟𝑒  

𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

Farming 
lifestyle 

Assumption Unitless 0.3 0.5 𝑢𝑖𝑚𝑔 =  𝑆𝑐𝑜𝑟𝑒  

𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

Inheritability 
and young 
farmers 

Assumption 
calculation based on 
profit ($/ha) and soil 
quality modeling 
(lbC/ac/yr * 0.01) 

Unitless -11 13 𝑢𝑖𝑛ℎ

= {

𝐶𝑒𝑙𝑙 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 
,

𝑃𝑟𝑜𝑓 > 0 
0, 𝑃𝑟𝑜𝑓 < 0
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Spatial data were processed using Python 3.6.9 language in Jupyter Notebook 

(https://jupyter.org/) with Geographic Information Systems (GIS) processing packages for spatial 

data processing: rasterio 1.0.21, pandas 0.25.3, geopandas 0.4.1, matplotlib 3.1.1., georasters 

0.5.15 and numpy 1.17.4. To view the code used in the analysis, please see Appendix C. Most 

layers that were used in this project are raster layers, which means the layer is split in many 

rectangular cells of equal size, and each spatially referenced cell gets a value of the relevant data. 

Raster data are particularly useful for subfield land use decision-making because grid cells can be 

visualized and considered individually in decision-making about landscape designs. For that 

reason, vector input datasets were converted into raster datasets, which allowed for bit-wise 

calculation of utility and comparisons between alternative cropping system scenarios for each 

cell.  

 

The subfield crop utility calculation was based on the weighted sum of each of the 

sustainability indicators as calculated using equation (1). The utility calculation for each 

sustainability indicator is listed in Table 4-2.  

𝑢𝑠𝑖𝑗 = ∑𝑤𝑖 × 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖

15

𝑖=1

 (1) 

Where wm is the weight assigned to each sustainability indicator based on the user preferences. 

Sustainability objectives were subject to several constraints as listed in equations (2) and (3). 

0 ≤ 𝑤𝑚 ≤ 1 (2) 

 ∑ 𝑤𝑚 = 1

15

𝑚=1

 (3) 
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Two crop suitability maps were generated based on the utility calculations – one, based 

on a deterministic approach using bit-wise comparisons between the utility values of each raster 

cell, and the other, using a “smoothing” algorithm based on the bit-wise comparison to improve 

the operability of the field. Furthermore, small raster cell groupings were removed using a 

“sieving” procedure to resemble spatial feasibility constraints. Sieving conditions are listed in 

equations (4) and (5), such that if the grouping of the raster cells was smaller than 20 pixels for 

switchgrass plots or 150 pixels for annual crops, those small subfield areas were converted to the 

type of crop of the surrounding cells. Such sizes can be modified to fit the size of the field 

analyzed and the preference of the user. This spatial constraint was set to recognize and avoid 

excessively fractured landscapes. If a subfield under a crop type is very small, agricultural 

machinery will not be able to operate efficiently and production budget estimates used in the 

analysis would be incorrect.  

𝐴𝑠𝑤𝑖𝑡𝑐ℎ𝑔𝑟𝑎𝑠𝑠 ≥ 20 𝑝𝑖𝑥𝑒𝑙𝑠 (4) 

𝐴𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑟𝑜𝑝𝑠 ≥ 150 𝑝𝑖𝑥𝑒𝑙𝑠 (5) 

Where Aswitchgrass representing the area of each switchgrass subfield; Aannual crops representing the 

area of each annual crop subfield.  

 

To ensure that the resulting field layouts are operable, “smoothing” algorithms were 

applied to the field layouts. Several smoothing approaches were tested. These strategies are 

illustrated in Figure 4-3. One-pixel smoothing means that if two pixels that are one pixel apart 

and are of the same crop type, then the pixel between them is converted to the same crop type. 

Following the same logic, in the 2-pixel smoothing, if two pixels that are two pixels apart are of 

the same crop type, then the two pixels between them are converted to the same crop type. A 

similar pattern holds for 3-pixel and 4-pixel smoothing. Such approach connected the fragmented 

subfield sections.  
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The smoothing algorithm functions like moving window method (Hager-Zanker 2016), 

where instead of evaluating the entire area in the raster file, only a part is assessed for the given 

criteria. This approach drastically reduces computational processing time. In this study, the 

smoothing algorithm is applied first horizontally from left to right, and then vertically from top to 

bottom. Changing the order or direction in which pixels are considered can slightly impact the 

final layout. Table 4-3 lists the steps how the field layout is changed with each algorithm iteration 

for three smoothing approaches. The pattern in which crop types are initially arranged and the 

selected smoothing algorithm will impact the final layout of the row or the column in a cropland 

map.  

    

 

 

 

 

 

Figure 4-3: Field smoothing approaches. Each raster file was smoothed using all four patterns both 

horizontally and vertically. 1-pixel smoothing means that if one pixel is found between pixels of 

the same crop type, it is automatically converted to the same crop types as the other two pixels. If 

the first and the last pixels are of different crop types, no change is applied. Similar approach is 

applied for 2, 3, and 4-pixel smoothing, but a larger number of pixels is automatically converted if 

they are between the same crop type. 
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The goal of the smoothing functions is to make the field more operable for agricultural 

machinery. To check this, the field designs were evaluated for how machinery operation 

efficiency would increase given the possible decrease in utility after smoothing. Field efficiency 

was calculated based on the equation found in Griffel et al. (2020) and is based on the perimeter-

to-area ratio of the subfield with a given crop type as indicated in equation (6). 

𝐹𝑖𝑒𝑙𝑑 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 0.179 − 0.145 ln (
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐴𝑟𝑒𝑎
) (6) 

To evaluate the loss of utility with the increase of efficiency, this study evaluates the efficiency 

elasticity – the percent change in efficiency given the percent change in utility.   

 

 

Table 4-3: Field layout change after applying the smoothing algorithm with each algorithm iteration 

for three smoothing approaches. Each step moves the area under algorithm consideration by one 

pixel from left to right. 

Step 1-pixel smoothing 2-pixel smoothing 3-pixel smoothing 

Initial layout    

Step 1    

Step 2    

Step 3    

Step 4    

Step 5    

Step 6    

Step 7    

Step 8    

Step 9    

Step 10    

Final layout    
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Assessment case 

The bit-wise spatial suitability assessment and the genetic algorithm crop suitability 

assessment were run on ten cases with stakeholder-informed weights to calculate pixel-by-pixel 

utility values for both switchgrass and the annual crop.  Results from all ten cases are presented in 

an analysis of the smoothing algorithm for its impact on field efficiency and the elasticity of field 

efficiency with the calculated utility values. For five of those cases the weights used for each of 

the indicators are listed in Table 4-5 in the results section and presented in additional detail. 

These five cases were selected from producer interviews and based on how distinct the resulting 

landscape designs were as suggested by the decision support tool. Tables 4-1 and 4-2 describe the 

model inputs that were used to run the spatial analysis, including indicator measures, range of 

values for those measures, and equations for calculating the utility for each of the sustainability 

indicators. The case study where those measures were applied for spatial analysis was a field with 

100 rows and 100 columns, each pixel’s size being 10x10m. Thus, the size of the plot used in the 

spatial analysis is 100 ha.  

 

The example field was an actual site located in Greene County, Iowa with the dominant 

soils of Nicollet loam, Webster clay loam, Clarion loam and Canisteo clay loam soil types (Soil 

Survey Staff 2020). The boundaries of this field were adjusted to focus the analysis on a square 

area of 100 ha. Profitability, calculated as the total income minus the crop expenses, was based on 

the remote sensing data from year 2018 used to estimate the subfield yield, maize price of 

$130/Mg (USDA 2019) and production cost of $1192/ha (ISU 2018). For that year, the sample 

field had an average maize yield of 12.6 Mg/ha (USDA 2019) and resulting average maize profit 

of $800/ha. Such values can be modified to fit the user’s interest and specific location of that 

user’s plot. Switchgrass yield was varied with an average of 10 Mg/ha (Wang et al. 2010) and 
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profit was calculated based on $100/Mg biomass price. Both corn and switchgrass yields were 

allowed to vary from these averages using observed variations in corn yield from satellite data for 

this field, and then applying one third the observed subfield corn yield variation as a proxy for the 

switchgrass yield variation as described in Chapter 3. This spatial analysis example was for 

demonstration purposes only and was not used to advise a producer on crop allocation or 

landscape design for the specific example field that is visualized. For actual decision support, 

stakeholders would need to input their preferred weights and data for their actual farm field(s). 

Results 

Model inputs and literature-based assumptions were used as the basis for the spatial data 

processing. Table 4-1 lists how those data were spatially represented in the decision tool. Some of 

the factors, like profitability, erosion potential, or water quality, had subfield-specific inputs. 

Some other factors, like positive image, independence or wildlife and pristine nature had crop-

specific assumptions or observations from prior literature as the inputs to the model. These spatial 

inputs were the foundation for both the crop suitability analysis and decision support for 

landscape layouts.  

 

Ten example scenarios were run on the example field. The scenarios were defined by the 

sustainability indicator priorities, which were based on the priorities’ weights from agricultural 

producer interviews. Even though the farm input files were the same for each scenario applied to 

this 100-ha field, the crop layouts were drastically different based on the farmer priorities. 

 

The model results were highly dependent on the model inputs.  Spatial inputs for the 

processing were two raster files – one with sustainability scores for annual crop rotation, and 



109 

 

another – with similar scores for perennial grasses (Table 4-4). These simulations were based on 

2018 corn profitability data, $100/Mg assumption for biomass price and environmental 

simulation data; and those specific inputs influenced the model outputs. In this example, the 

$100/Mg biomass price coupled with the cost of switchgrass production and harvest meant that 

switchgrass was an unprofitable crop and received zero utility. Similarly, at this biomass price no 

stover was profitable to harvest.   

 Corn annual crop 

utility layer 

Switchgrass utility 

layer 

Example spatial input 

for the crop type layer 

 

 

 

 
Utility scores: 

Soil quality 3305 7417 

Profitability 2015 0 

Independence 8806 7613 

Financial stability 6785 5324 

Yield 8122 6113 

Diversification 3818 7637 

Wildlife and pristine 

nature 

3150 9546 

CO2 454 1620 

Water quality 2174 4797 

Erosion potential 7856 7692 

Food production 4773 0 

Rural development 6364 9546 

Positive Image 3818 7637 

Farming lifestyle 2864 4773 

Inheritability and 

young farmers 

2041 0 

Table 4-4:  Example input fields for the annual corn and perennial switchgrass crops with the 

corresponding sustainability indicator values.  Utility scores are the sum of individual scores for all 

10,000 cells in this 100 x 100 pixel simulated 100 ha field. Each indicator can thus have a maximum 

score of 10,000. 
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A simple pixel-by-pixel comparison between the two input files could generate a non-

operable field layout even though the utility for each raster cell would be maximized. Note that 

the total utility of the spatial layout was defined as the sum of the utilities of each raster cell. That 

means the placement of each cell relative to each other did not affect the utility calculation even 

though crop arrangement changes the efficiency of the harvest and thus affects the cost of 

production and the final profit. As a way to represent such tradeoff in spatial decision-making, an 

optimization algorithm can be developed that calculates the total utility of the farm with farm-

level indicators like field efficiency. As an alternative to such formal optimization, this study 

calculated the average field efficiency given the field layout and utilizes smoothing and sieving 

algorithms to produce a crop layout that is operable and has fewer subfields.  

 

When selecting the smoothing method, all four smoothing algorithms were run for each 

of ten cases. The improvement in efficiency with each of the method was plotted in the Figures 4-

4 and 4-5 below. For most of the examples, the improvement in field efficiency became marginal 

beyond 2-pixel smoothing. In the Figure 4-5 below, the efficiency elasticity is ratio between the 

percent change in field efficiency from no-smoothing to that smoothing scenario divided by the 

percent change in utility from no-smoothing to that smoothing scenario. 
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Figure 4-4: Improvement in field efficiency for ten tested cases with four different strategies for 

field smoothing. 
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One case still saw an improvement between 3-pixel and 4-pixel smoothing. Table 4-5 

illustrates the crop layouts and the corresponding field efficiency and utility for that case. The 

change between 3-pixel and 4-pixel efficiency can be explained by a high degree of complexity 

of the field. The improvement in efficiency in this example supports the necessity of using 

decision support and smoothing functions to ensure that while meeting producer needs, the 

generated field layouts have the most efficient arrangement even when they have complex 

subfield shapes. 

 

 

 

 

Figure 4-5: Efficiency elasticity, or percent change in efficiency compared to the percent change in 

utility, with each of the smoothing approaches applied to field generated by ten utility function 

cases. 
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The sustainability assessment and crop layout decision support system were run for ten 

different cases. Each case represents an agricultural producer with their own set of priorities and 

weights for the sustainability indicators. Tables 4-6 and 4-7 below list the weights and the 

Table 4-5: Improvement of field efficiency in a complex field layout design with different 

smoothing operations. 

 Pixel-by-pixel 

comparison 

1-pixel smoothing 2-pixel smoothing 

Layout 

   
Utility 4185 4169 

(-0.38%) 

4163 

(-0.52%) 

Number 

of 

subfields 

90 9 

(10 times) 

9 

(10 times) 

Field 

Efficiency 

39% 59.2% 

(+51.8%) 

59.4% 

(+52.3%) 

 3-pixel smoothing 4-pixel smoothing 

Layout 

 
 

Utility 4152 

(-0.79%) 

4142 

(-1.03%) 

Number 

of 

subfields 

8 

(11.25 times) 

4 

(22.5 times) 

Field 

Efficiency 

61.2% 

(56.9%) 

68.8% 

(76.4%) 
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resulting field layouts of five most distinct scenarios that were run. Two maps are given in the 

results – one layout which is a result of a simple pixel-by-pixel comparison, and the second one 

after a smoothing algorithm (2-pixel), as the improvement of field efficiency leveled beyond the 

2-pixel approach. Smoothing improved field efficiency by over 30% to 100% depending on the 

initial layout, with only a >1% reduction in the total utility. 

 

Table 4-6: Weights that were assigned to sustainability indicators for each of the decision cases 

based on agricultural producer interviews. 

Agricultural 
producer 

Case 1 Case 2 Case 3 Case 4 Case 5 

Brief Description Stover-

harvesting 

farmer 

(economic 

factors-

focused) 

Bioenergy 

farmer – 

economic 

and yield-

dominated 

Stover-

harvesting 

farmer 

with equal 

priority for 

profit and 

soil quality 

Conservati

on farmer 

with 

diversified 

priorities 

Bioenergy 

crop farmer 

(all factors 

are weighted 

equally) 

Profitability 0.25 0.421 0.154 0.196 0.067 

Independence   0.077  0.067 

Financial stability 0.50  0.077 0.118 0.067 

Yield 0.25 0.211 0.062 0.108 0.067 

Diversification   0.108  0.067 

Soil quality  0.105 0.154 0.118 0.067 

Wildlife and pristine 

nature 

  0.046  0.067 

CO2    0.078 0.067 

Water quality  0.053 0.077 0.137 0.067 

Erosion potential  0.105 0.077 0.118 0.067 

Food production   0.077  0.067 

Rural development     0.067 

Positive Image  0.053  0.049 0.067 

Farming lifestyle    0.078 0.067 

Inheritability and 

young farmers 

 0.053 0.092  0.067 
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Table 4-7: Crop layouts as generated based on producer priorities with and without applying the 

smoothing algorithm. Yellow represents annual crop rotation and purple represents perennial 

grasses. 

Agricultural 
producer 

Pixel-by-pixel comparison 
(no smoothing) 

Smoothing and sieving of 
small subfields (2-pixel 
method) 

Case 1 

  
Utility 5676 5676 

(0% change) 

Number of subfields 7 3 
(2.33 times) 

Field Efficiency 0.54 0.70 
(+29.6%) 

Case 2 

  
Utility 4185 4163 

(-0.52%) 

Number of subfields 90 9 
(10 times) 

Field Efficiency 39% 59.4% 
(+52.3%) 

Case 3 

 
 

 

Utility 4624 4605 
(-0.41%) 
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Discussion 

Stakeholder engagement helped define the decision variables that were included in the 

spatial decision support. Similar to Kodikara et al. (2010), this study approached the participants 

asking to weight the decision priorities. Two important differences were that in the present study 

Number of subfields 125 5 
(25 times) 

Field Efficiency 38% 71.1% 
(+87.1%) 

Case 4 

  
Utility 4396 4389 

(-0.16%) 

Number of subfields 82 3 
(27.3 times) 

Field Efficiency 38.6% 76.8% 
(+99.0%) 

Case 5 

  
 
 
 

Utility 5120 5117 
(-0.06%) 

Number of subfields 12 1 
(12 times) 

Field Efficiency 0.44 0.98 
(+108.5%) 
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the list of priorities was generated by the producers themselves, and the weights were set using a 

visual pile of poker chips rather than a software interface. Furthermore, even though stakeholder-

selected utility functions would have been useful for further modeling, not all producers agreed 

on the same measure for an indicator, and this would not allow for a consistent comparison of the 

utility function during the test and demonstration reported here. Some of these variables, like 

profitability, soil quality and water quality are frequently modeled in agricultural systems and 

were spatially explicit. Several of the other factors, like rural development, independence, and 

food production among others, are hardly ever included in farm-level decision modeling and were 

included in this model as decision variables set to a constant value for each cropping system. By 

recognizing the priorities of the stakeholder, the model moved beyond the typical factors that are 

currently commonly modeled in agriculture, into introducing the “nontangible” factors for 

landscape decision-making. Accounting for such factors is a challenge because they are not easily 

measured at the field, farm, or even community levels, even though they impact and inform field 

decisions according to producer participants. 

 

Including the real preferences and measures to which stakeholders can relate comes with 

a tradeoff. While stakeholder engagement increases the relevance of the decision framework and 

provides a transparent set of indicators for modeling, some of the factors are challenging to 

represent quantitatively or consistently. This challenge was particularly problematic for factors 

like food production, rural development, or independence. While they need to be included as they 

are relevant to the decision-maker, these indicators have multiple meanings to different producers 

and are close to impossible to measure at a subfield level, so have to be represented by proxy. 

Further research into the spatial relationship between such social factors and the subfield-level 

decisions can help refine the decision support tool and provide a more robust output. 
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Spatial analysis using stakeholder-informed priorities helped identify possible crop 

arrangements that maximize landscape utility for the agricultural producer. Case 1 generated a 

suggested crop layout largely driven by a producer’s economic priorities, as detailed by the 

priority weighting in Table 4-7. That set of weights generated a layout that is very similar to the 

fields that are currently found in the U.S. Midwest: dominated by an annual crop rotation, with 

only small portions of the land devoted to perennial grasses. As the priorities and the 

corresponding weight became more diversified in cases 2 through 5, increasing the amounts of 

perennial grasses are introduced into the landscape. Since in all the cases the weights reflected the 

actual priorities of agricultural producers that were previously interviewed, this study illustrates 

that accounting for longer-term and more diverse producer priorities could lead to a landscape 

transformation with more perennial grasses and biomass production plots.  

 

Beyond sustainability indicator priorities, stakeholders conceptualized their impact 

differently in space and time. As has been discussed in the previous chapters, producer’s spatial 

conceptualization of their priorities spanned from local and specific to their fields or farm to more 

global concerns about the entire planet. As with these spatial considerations, temporal 

considerations varied by person, and a meaningful and relevant decision support framework 

should accommodate a range of different time horizons for planning.  Time considerations varied 

from relatively short terms of 6 month or one year, up to 50+ years and three generations.  Future 

research could further develop the tool demonstrated in this chapter, illustrate the decision impact 

beyond a static spatial and temporal boundary, and allow stakeholders to select different 

boundaries for the indicators to reflect their interests and concerns. Such modeling could also 

incorporate uncertainty around the decisions, moving the spatial decision-making approach from 

being a function of deterministic utility calculations to more realistic stochastic results.  Weather 

and market variables are particularly relevant in this regard. 
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Conclusion 

Including stakeholders in the discussion in the early phases of model development can 

help inform the researcher and result in a more relevant and meaningful decision support model. 

In addition to providing input and feedback on possible outcomes of the developed decision 

support tool, producers suggested including sustainability indicators that were seldom used in 

agricultural and environmental decision-making, like positive image, independence, or 

inheritability of land. Inclusion of such factors can help reframe what are typically technocratic 

approaches to agricultural landscape designs and farming system objectives. Based on these 

stakeholder-derived priorities, this study developed and demonstrated a framework to assist in 

producer decision-making, starting from an early stakeholder interaction stage, through to data 

processing and layout design. The developed tool used spatial processing and smoothing 

algorithms to suggest a crop allocation layout that is operable with agricultural machinery. Using 

cases of real agricultural producer priorities, this study illustrated that landscape layouts would 

differ if stakeholder-specific priorities are included in the decision-making. Furthermore, the 

study illustrates that the more diversified priorities are, the more transformation was seen in the 

landscape towards perennial grasses compared to the status-quo of annual crop rotations. This 

study applied spatial decision analysis techniques to a new application – bioenergy agriculture 

planning, offering a new direction for feedstock supply and stakeholder engagement research. 

The framework can be extended beyond agricultural sustainability assessment through scenarios 

to agricultural sustainability planning, and can even be expanded beyond agricultural uses to 

other spatial stakeholder decision analysis problems.  



 

 

Chapter 5 

 

Conclusions and future work 

Contributions and key findings 

This dissertation describes a decision support framework that was developed to support 

agricultural producer decisions for designing farm landscapes. The decision framework suggests 

ways to reallocate land at the subfield level for either annual crops (maize or soybeans) or 

perennial crops (switchgrass) based on producers’ priority indicators of economic, environmental 

and social sustainability. The framework was developed in partnership with agricultural 

producers who 1) identified key sustainability indicators towards which the landscape can be 

optimized, 2) verified whether the modeled indicators and their measures match the producer 

values and 3) weighted those indicators so that the model could produce a single crop layout 

based on producer priorities. Using this approach, stakeholder opinions were integrated in the 

framework from the onset through development and demonstration of this decision support tool. 

A combination of spatial environmental data, production economics and other factors are used to 

compute the subfield sustainability utility for different crops and suggest possible field crop 

arrangements that maximize those utility estimates. To support the decision support tool, several 

complementary studies were carried out and discussed in the individual dissertation chapters. 

 

Chapter 2 describes two rounds of interview interactions with agricultural producers in 

Iowa. The goal of the initial interviews was to identify the key priorities of the stakeholders so 

that those priorities could later be used as sustainability indicators for decision-making. The 

second round of interviews were used to identify the spatial and temporal boundaries of indicators 
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and weight those that mattered most to the producers. This study found that the three groups of 

potential bioenergy feedstock producers – agricultural producers who established perennial 

grasses for conservation, for biomass harvest, or who harvested corn stover for bioenergy – have 

a wide range of sustainability priorities. Such priorities include factors that are frequently 

modeled for decision-making, like profitability, financial stability and soil quality, but additional 

priorities that are less commonly found in agricultural sustainability modeling and assessment, 

such as independence, positive image and land inheritability. Furthermore, the study established 

that the diverse interview participants considered a wide range of space and time boundaries and 

that these boundary perspectives were largely unrelated to which of the three groups we classified 

them in, highlighting the complexity of producers’ priorities and decision-making.   

 

One of the top priorities of the stakeholders was farm profitability. In recognition of this 

priority, Chapter 3 investigated whether and where switchgrass might be economically 

competitive with the most prevalent annual crop in Iowa – maize. The study examined two 

example watersheds in high-yielding Hardin and Buena Vista counties in Iowa, both located near 

cellulosic bioenergy facilities, and found that for a range of possible biomass market prices of $50 

to $150/Mg switchgrass can be more profitable on 10% to over 80% of the cropland when 

compared with maize even with stover harvest. These results are based on subfield maize yields 

estimated from remote sensing data as well as literature-based correlations for stover and 

switchgrass yield and crop production costs. The model indicated that maize profitability in 

recent years ranged from a loss of $400/ha to a profit of $1500/ha. This chapter’s findings 

confirm the results from previous studies that switchgrass could be more profitable on parts of the 

land compared to maize. However, unlike the previous studies that relied on yield model 

predictions based on coarsely-grained maps of soil type, weather and other input variables, the 
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fine-scale remote sensing data used in this study was at 30 x 30 meters or better, and the yield 

observations were from each year in a six year period. 

 

Economic profitability was then integrated with 14 other indicators to develop a decision 

support framework for landscape crop allocation. As discussed in Chapter 4, the framework was 

tested using a spatial suitability assessment tool. The developed tool used spatial data processing 

to generate a crop layout based on sustainability utility values, and a smoothing algorithm to 

increase operability of the field layout. The framework successfully generated a field layout that 

maximized utility of the field, and the smoothing algorithm improved the operability as measured 

using field efficiency. Using the inputs from Chapter 2 of agricultural producer priorities, the 

developed framework illustrated that producers with different priorities would generate different 

crop layouts for the same field if they specify the sustainability indicator weights that reflect their 

values and are most relevant to them. The results show that the more diversified the producer 

priorities, the more the field landscape would be transformed into a mixture of perennial and 

annual crops to maximize that more diverse utility function. Overall, this dissertation 

demonstrated a decision support framework that can connect agricultural producer priorities to 

sustainability assessment, then uses such criteria to generate a possible farm field layout that 

integrates perennial grasses into a field with annual crops and maximizes the producer-defined 

sustainability of the field.      

Recommendations for future research 

The research for each of the chapters identified knowledge gaps that can be addressed in 

future research. The recommendations for future research related to each of the dissertation 

chapters are summarized below. 
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An understanding of the priorities of absentee landowners and of more conventional 

farmers can help design decision support tools that could meet the needs of a more diverse range 

agricultural producers. This study intentionally engaged producers that are innovative – those that 

have adopted new agricultural practices like planting perennial grasses for conservation or 

biomass production purposes, or harvested corn stover. The priorities of these innovative farmers 

could be different from producers who have not tried new agricultural practices. With over 50% 

of cropland in most agricultural regions rented by farm operators from absentee landowners, the 

values and motivations of absentee landowners have significant relevance as well. 

 

A study on the priorities of absentee farmers or more conventional farmers could be 

paired with inquiring about the “connection” that the producers have to the land. Some of the 

interviewees hypothesized that other producers who do not have a strong connection to land 

might not have as high priority for soil, water quality, wildlife presence and other environmental 

factors. Being an absentee farmer could lessen the connection to land, and thus impact that 

group’s priorities.  

 

A longitudinal study on agricultural producer priorities and spatio-temporal boundaries of 

concern can shed the light on how these priorities change over time. This study highlighted the 

current priorities, but they do change over time as was mentioned by producers themselves. A 

long-term study on priorities could help prepare for the changes in the decision-making in 

agricultural fields as a function of experience, age, changing markets and a changing climate. 

Since perennial crops are costly to establish but have a production life of over 10 years, it is 

important to understand that such decisions are long-term, and also that the decision-maker might 

change their mind during the establishment and growth timeframe.  
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The economic assessment of the switchgrass opportunity in this study did not account for 

the risks related to the possible markets, weather and other impacts, yet resilience to such risks is 

considered a hallmark feature of switchgrass. While that resilience was to some extent accounted 

for by reducing the yield variability of switchgrass to one third the observed yield variability of 

corn, further quantifying such findings could help producers make more informed decisions about 

crop allocation. 

 

The study findings suggest that a wide range of priorities and spatio-temporal boundaries 

matter to bioenergy decision-making. Further development is needed to develop decision support 

tools that work across scales and that can translate the implications of decisions across those 

scales. Because the stakeholders considered multiple spatial and temporal boundaries in defining 

their measures and priorities, the tools developed need to be flexible enough to address this 

variety. It will also be important to explore how a combination of models could avoid the 

complexity and computational intensity of multi-scalar decision modelling.  

 

Using optimization methods could also include field efficiency in the profitability 

calculation, and thus create a feedback loop between the shape of the field and the final utility. 

Further development of optimization tools (heuristic and exact) can help find a solution that can 

be truly optimal as compared to the design that results from smoothing and reduces the total 

utility. An exact optimization technique could help find the global optimum of the landscape 

decision by considering every arrangement of the landscape plots, yet such technique would not 

be as computationally efficient as a heuristic method because of the large size of the problem. 

Possible techniques for addressing the optimization problem include applying graph theory to 

speed up the exact optimization processing of otherwise excessively large optimization problem.  
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Finally, it must be recognized that landscape decisions with perennial grasses require 

long-term planning and a long-term commitment to markets which are only beginning to emerge. 

This lack of experience with emerging biomass markets also implies that there is uncertainty 

around the implications of such decisions. Future work could incorporate risk and uncertainty of 

the possible impacts of converting subfields to switchgrass or annual crops. By transforming the 

decision from deterministic to stochastic, users would obtain more realistic information about the 

potential utility of their final landscape layout. Such detail could incorporate current risks and 

also project future risks due to climate change, which will likely increase the likelihood of 

flooding or droughts in the US Midwest. These impacts of climate change, which are happening 

now and will accelerate in coming decades, will also affect field profitability, and many of the 

other underlying economic, environmental and social sustainability assumptions necessary for a 

robust landscape design decision.
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Appendix A 

 

Supplementary Data for Chapter 2  

Researcher characteristics and possible bias 

A researcher’s conscious or unconscious bias can reduce the validity of the collected 

data. Eliminating personal input completely is impossible, which is why Noble and Smith (2015) 

suggest acknowledging and reflecting on personal biases in data collection and analysis. James & 

Vinnicombe (2002) suggest acknowledging the “person in the researcher”, which has been done 

using the reflexivity approach, especially in feminist research (Pini 2004). To acknowledge the 

possible bias in analyzing the data, this section provides a brief overview of some of the 

researcher’s possible biases.  

 

The interviewer’s biases are categorized in three ways: research background, personal 

background, and style of interaction. The researcher (Vazhnik) has been trained as an 

environmental scientist, with additional background in operations research and agricultural 

engineering. Furthermore, the researcher is part of a project that studies bioenergy and perennial 

grasses as alternatives to annual crops, because of the potential benefits to the environment and 

alternative profit for the growers. The researcher used the interviews to explore producer 

priorities in part to inform the decision support system that the project is developing. This 

particular research background could have encouraged producers to discuss their environmental 

or perennial grass-approving priorities compared to what could have been a conversation with a 

researcher from a different background. Coming from the standpoint of using sustainability 
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indicators and sustainability pillars to understand producer priorities could also have affected how 

the interviews were coded.  

 

Second, the researcher’s personal background could have affected not just the topics that 

were brought up during the discussions but also the style in which producers interacted with the 

researcher. The interviewer is an environmentalist and could have provided approving non-verbal 

clues to interviewees when discussing water quality, soil quality and biodiversity priorities. The 

researcher comes from a city which could have strengthened the perception of being an outsider 

(but also recognizing that many of the interviewed producers assumed and addressed her as if she 

grew up on a farm). Most of the producers she interacted with were men, while the researcher 

was a young woman, which could have affected the language that the producers used in their 

interactions with her and what topics they chose to bring up.   

 

Third, the style of interaction could have influenced the responses that the researcher 

received. Much of the information that was collected was intended to inform decision support 

models, which require quantifiable inputs. Yet, because the researcher interacted with the same 

group of producers both times and had developed relationships with them, she did not push for a 

hard answer when the producers seemed reluctant to reply or did not have a reply that easily came 

to mind. For example, when asking how the producers would measure whether their farm has 

improved in the future, and what time-frame they would be most concerned about when tracking 

progress, some of the participants did not have an answer or said that they don’t know what that 

measure would be. In such a case, the researcher prioritized having a flowing conversation that 

was interesting to the producers and not pressuring them for an answer. However, moving on to 

the next question without further interrogation meant that not every datapoint was collected for 

every participant. 
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1. Phase 1 Producer Interaction Questions 

The interviewer stated the following purpose of the interviews: 

The purpose of this study is to understand the priorities that you have in designing their 

operations, and what space and time boundaries inform your opinion. You will hear questions 

about your priorities and concerns in agriculture and will be asked to answer them in detail. The 

interview will take approximately an hour. Confidentiality of your answers will be maintained 

and personal identifiable information will be removed from the data.  

 

The interviewer later asked the participants the following questions:  

• What issues in agriculture are currently most concerning to you?   

• What are the major ways that agricultural systems affect you?   

• What do you value in farming and agriculture? How would you measure that 

value?  

• What or who have been the main sources of information influencing your views 

on agriculture?  

• If you were to imagine a geographic map, where on the map do you think you 

influence people, nature, and agricultural systems by your farming operations? 

How would you describe that area?  

• Looking at a similar map, where do you think that agricultural systems, people, 

and nature affect your farming operations?  

• Thinking about time, what is the timespan in which your agricultural operations 

influence people, nature, and agricultural systems? How would you describe the 

time and duration of the effect?  
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• Reversely, what is the timespan that people, nature, and agricultural systems 

influence your agricultural operations? How would you describe the time and 

duration of the effect?  

• Who do you think should be involved in improving agricultural practices?   

• Who should be involved in promoting and enhancing potential positive impacts 

of agricultural management practices that do not harm water, soil and air quality?  

• What is the (up to three) decision you would make to improve the current 

situation for agriculture?  

• What would you measure or monitor to evaluate the improvements that resulted 

from your actions?  

• How long would you monitor these changes? Where would you do the 

monitoring in space, and why?  

• Would the indicators that you measure change the way you manage your farm?   

• What [which indicators] would influence your decision around planning and 

managing your farm? (If you use conservation practices, what motivates you to 

do so?)  

• In your view, can conservation crops/practices become a way of protecting farm 

income? If yes, how?  

• Would you like to add any comments? 
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2. Phase 2 Producer Interaction Questions 

The interviewer provided the following context: 

The goal of this interview is to understand how you assign priorities when planning the 

landscape. In the previous interviews, I asked you about your concerns in agriculture, what 

motivates you to farm and put specific crops on the ground, but also how you understand 

sustainability. I took your input and among all the priorities you listed, I selected 18 core ones 

that can help inform the decision on the field. I have named them indicators of sustainability – 

how the farm can keep operating into the future. You can see these indicators in front of you. To 

make sure that the tool we are developing addresses your needs and interests, we will discuss 

these indicators. 

The participants were presented with the cards that listed the different priorities, and also 

the cards with time and space boundaries. They were then asked the following questions: 

(Table below was visible to the interviewer, but the participants could instead see cards 

with indicator names and poker chips to assign priorities.) 

Table A-1:  Table used by the interviewer to record producer sustainability indicator priorities. 

Independence Cat. Water quality Cat. Food production Cat. 

time space min max weight time space min max weight time space min max weight 

Equal opportunity Cat. Soil quality Cat. Rural development Cat. 

time space min max weight time space min max weight time space min max weight 

Financial stability Cat. Nature proximity Cat. Positive image Cat. 

    weight     weight     weight 

Profitability Cat. CO2 emissions Cat. Farming lifestyle Cat. 

    weight     weight     weight 

Yield Cat. Erosion potential Cat. Land inheritability Cat. 

    weight     weight     weight 

Diversification Cat. Wildlife presence Cat. Young farmers Cat. 

    weight     weight     weight 
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• Which indicators would you include in your decision about which crop to put where on a 

field?  

• How important is each indicator in the context of all indicators that you found relevant? 

Please, assign the appropriate number of poker chips and explain why. 

• Is there a priority or an indicator that affects your decision that is not included on the list? 

• For each indicator that you include in the decision-making, what is the time scale that is 

the most relevant to you? Please, place one of the 1, 5, 10, 20, 50, 100 year cards on the 

indicator. Is that the time scale at which you would commonly consider when making 

your decision in the landscape? 

• For each indicator that you include in the decision-making, what is the geographic scale 

that is most relevant to you? Please, place one of the farm, local watershed (subcounty), 

county, state, Midwest, The Mississippi River Basin and Gulf of Mexico, U.S., world 

cards on the indicator. Is that the geographic area you would commonly consider when 

making your decision in the landscape? 

• For indicators that you selected, what would you consider an excellent value or effect? 

What value is acceptable? Among the graphs below, which do you think represents that 

value better?  

• To which category would you assign each of these indicators?  
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Tool output questions:  

 

• What are your first thoughts when looking at the suggested map? 

• On a scale from 0 to 10 how well does the suggested map meet your priorities?  

• Which priorities are met most? Which priorities are met least? 

• How would you like to change the map or the placement of crops? 

• How you like to reset the importance among indicators to see if it meets your priorities 

better? 

• (after the re-set) Which of these crop plans would you be more likely to adopt? What is 

the percent likelihood?  

• How can the map be improved to increase the likelihood that you adopt the suggested 

plan? 

• (Note the time that is takes to enter the new priorities when already familiar with the tool 

and its results) 

Overall evaluation:  

• What about the tool is difficult to understand? What guidance would be the most useful 

(text, service provider, video online…)? 

• How much time would you be willing to spend working with the tool? 

• What would you add or remove from the tool output? 

• Overall, how satisfied are you with the experience using the tool? With its output? 
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Complete list of producer priorities as a result of Phase 1 interviews.  

Table A-2: The complete list of producer priorities and the number of mentions per group as a result 

of Phase 1 interviews. 
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Profitability/cash flow  9 10 6 25 

Freedom and independence (how 
independent is the decision of outside 
impacts) 

8 8 5 21 

Water quality  8 8 2 18 

Erosion 6 9 1 16 

Soil quality/Organic matter in soil/Soil health 7 5 4 16 

Lifestyle/Type of work/Life and work with 
family  

5 6 5 16 

Stable markets and prices  5 6 3 14 

Rural development 6 4 1 11 

Young farmers and young families in farming 3 7 1 11 

Developing a positive image of farmers 
among outsiders and city-dwellers  

3 3 5 11 

Diversified production and markets 1 7 2 10 

Equal opportunity for small 
operations/Farms  

5 4 1 10 

Heritage/Tradition  4 4 1 9 

Biodiversity/Presence of wildlife 6 2  - 8 

Proximity to nature/Experience of pristine 
nature 

2 4 2 8 

“Feeding the world” 2 4 2 8 

Yields  2 2 4 8 
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Table A-2 (continued):  The complete list of producer priorities and the number of mentions per 

group as a result of Phase 1 interviews. 
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=
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Education opportunity/Informed decisions  3 3 -   6 

Efficient use of labor  1 3 2 6 

Opportunity for land ownership 1 3 2 6 

Satisfaction with the work/Purposeful 
work/No guilt  

1 1 3 5 

Efficient use of inputs  2 3 -   5 

Amount of wildlife habitat  1 3 - 4 

Reduced risk/Uncertainty 1 1 2 4 

Presence/Number of earthworms   2 1 - 3 

Authority in price negotiation/Fair price for 
what they do  

- 1 2 3 

Supplier competition and free trade for 
bidding  

1 2 -   3 

Amount of forests  2 -   -  2 

CO2 emissions  1 1 -   2 

Recreational value of clean water bodies 1 1 - 2 

Opportunity to hunt 1 1 - 2 

Comradery/Collaboration in the community 2 -   -  2 

Data ownership  - 1 1 2 

Making good investments  -  2 -   2 

Seeding down marginal acres  - 1 1 2 

Political and financial incentives  - 1 1 2 

Weed resistance  - - 1 1 

Beauty/aesthetic value  1 - - 1 

Public health  - 1 - 1 

Connection between landowners and land  - 1 - 1 
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Appendix B 

 

Supplementary Data for Chapter 3  

1. Google Earth Engine yield estimation code 

The code below is provided for replicability and verifiability. It can be run using the 

Google Earth Engine.   

var startCLU = ee.Date('2016-01-01'); 
var endCLU = ee.Date('2016-12-31'); 
var startImage = ee.Date('2016-06-15'); 
var endImage = ee.Date('2016-08-15'); 
var geometry: Table users/YourFolder 
var coefficient = Value //coefficient to adjust for the average county yield  
var corn_price = Value;  
var corn_cost = Value; 
var swt_prof = Value; 
  

Sentinel Landsat 

Crop out the parts of the field that have only corn (use CDL dataset from USDA) 

var dataset = ee.ImageCollection('USDA/NASS/CDL') 
                  .filter(ee.Filter.date(startCLU, endCLU)) 
                  .filterBounds(geometry) 
                  .select('cropland') 
                  .first(); 

                   
//Mask the image to leave only the "corn" (=1) plots 
var crop_corn = dataset.updateMask(dataset.eq(1)); 
 
var corn = crop_corn.reduceToVectors({ 
        scale: 10, 
        geometry: geometry, 
        geometryType: 'polygon', 
        maxPixels: 1e8 
   
}); 
// A function to clip corn boundaries to the polygon shapefile 
function clipper(image) { 
  return image.clip(corn) 
} 
 

Mask out the clouds and open the Sentinel maps Open the Landsat maps (they already have 
clouds filtered out in the NDVI layers) 

// Function to mask clouds using the Sentinel-2 QA 
band. 
function maskS2clouds(image) { 
  var qa = image.select('QA60') 

var dataset = 
ee.ImageCollection('LANDSAT/LC08/C01/T1_8D
AY_NDVI') 
                  .filterDate(startImage, endImage) 
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  // Bits 10 and 11 are clouds and cirrus, respectively. 
  var cloudBitMask = 1 << 10; 
  var cirrusBitMask = 1 << 11; 
 
  // Both flags should be set to zero, indicating clear 
conditions. 
var mask =  qa.bitwiseAnd(cloudBitMask). 

eq(0).and( 
           qa.bitwiseAnd(cirrusBitMask).eq(0)) 

 
  // Return the masked and scaled data, without the 
QA bands. 
  return image.updateMask(mask).divide(10000) 
      .select("B.*") 
      .copyProperties(image, ["system:time_start"]) 
} 
 
// Load Sentinel-2 TOA reflectance data. 
var collection = 
ee.ImageCollection('COPERNICUS/S2') 

.filterDate(startImage, endImage) 

.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCEN
TAGE', 20)) 

    .map(clipper) 
    .map(maskS2clouds) 
 
// Map the function over one year of data and take 
the median. 
var composite = collection.median() 
 

                  .filterBounds(table) 
                  .map(clipper); 
       
 
 
 
 
 

Calculate the NDVI from the layers Access NDVI from the Landsat dataset 

// Calculate NDVI = (NIR-RED)/(NIR+RED) 
var ndvi = 
composite.normalizedDifference(['B8','B4']); 
 

var colorized = dataset.select('NDVI'); 
var ndvi = colorized.median() 
 

Estimate corn yield Estimate corn yield 

// Corn yield calculation using indices  
var corn_yield = ndvi.multiply(3.3525).exp().multiply(coefficient); //as in (Teal et al. 2006) in Mg/ha 
 
var av_yield = corn_yield.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: geometry, 
  scale:30, 
}); 
 
print('Average yield', av_yield);  
 

Calculate corn subfield profit  

var profit = corn_yield.multiply(corn_price).subtract(corn_cost); 
 
var av_profit = profit.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: geometry, 
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  scale:30, 
}); 
 
print('Average profit', av_profit);  
 
// Calculate the amount of area that loses money 
var loss = profit.updateMask(profit.lte(0)); 
var av_loss = loss.reduceRegion({ 
  reducer: ee.Reducer.mean().unweighted(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Average loss', av_loss);  
var pixel_loss = loss.reduceRegion({ 
  reducer: ee.Reducer.count(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Number of pixels with losses', pixel_loss); 
 
var pixelcount = profit.reduceRegion({ 
  reducer: ee.Reducer.count(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Total number of pixels', pixelcount); 
 

Comparing corn profitability to the possible profitability from switchgrass 

// Compare the ‘profit’ layer values to either 0 or switchgrass profitability. If the value is lower, replace with 
switchgrass  
 
var compare = profit.where(profit.lte(swt_prof),swt_prof); 
 
var av_profit2 = compare.reduceRegion({ 
  reducer: ee.Reducer.mean().unweighted(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Average profit (switchgrass comparison)', av_profit2);  
 
var compare_loss = compare.updateMask(compare.lte(0)); 
var av_comp_loss = compare_loss.reduceRegion({ 
  reducer: ee.Reducer.mean().unweighted(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Average loss (switchgrass comparison)', av_comp_loss);  
 
var pixel_comp_loss = compare_loss.reduceRegion({ 
  reducer: ee.Reducer.count(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Number of pixels with losses (switchgrass comparison)', pixel_comp_loss);  
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var swt = profit.updateMask(profit.lte(swt_prof)); 
var pixel_swt = swt.reduceRegion({ 
  reducer: ee.Reducer.count(), 
  geometry: geometry, 
  scale:30, 
}); 
print('Number of pixels with switchgrass', pixel_swt); 
 

Visualization 

//Palettes for the imagery from https://github.com/gee-community/ee-palettes  
var palettes = require('users/gena/packages:palettes'); 
var palette = palettes.colorbrewer.RdYlGn[7]; 
var visParams_profit = ({min: -400, max: 1500, palette: palette}); 
Map.addLayer(profit, visParams_profit, 'Profit'); 
 
// set position of panel 
var legend = ui.Panel({ 
style: { 
position: 'bottom-left', 
padding: '8px 15px' 
} 
}); 
  
// Create legend title 
var legendTitle = ui.Label({ 
value: 'Profitability', 
style: { 
fontWeight: 'bold', 
fontSize: '18px', 
margin: '0 0 4px 0', 
padding: '0' 
} 
}); 
  
// Add the title to the panel 
legend.add(legendTitle); 
  
// create the legend image 
var lon = ee.Image.pixelLonLat().select('latitude'); 
var gradient = lon.multiply((visParams_profit.max-visParams_profit.min)/100.0).add(visParams_profit.min); 
var legendImage = gradient.visualize(visParams_profit); 
  
// create text on top of legend 
var panel = ui.Panel({ 
widgets: [ 
ui.Label(visParams_profit['max']) 
], 
}); 
  
legend.add(panel); 
  
// create thumbnail from the image 
var thumbnail = ui.Thumbnail({ 
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image: legendImage, 
params: {bbox:'0,0,10,100', dimensions:'10x200'}, 
style: {padding: '1px', position: 'bottom-center'} 
}); 
  
// add the thumbnail to the legend 
legend.add(thumbnail); 
  
// create text on top of legend 
var panel = ui.Panel({ 
widgets: [ 
ui.Label(visParams_profit['min']) 
], 
}); 
  
legend.add(panel); 
  
Map.add(legend); 

2. Switchgrass yield variability 

Switchgrass yield variability was based on the findings from the study by Hao et al. 

(2016). In that experiment, the authors compared the yield of corn and switchgrass plots that were 

planted side-by-side in Southern Michigan.  Because their switchgrass was planted on marginal 

land, Hao et al.’s switchgrass yields were 5 Mg/ha, which is lower than commonly discussed in 

the literature from other field trials. The study covered only two sites (Figure B-1 below) but still 

provided experimental data for yield variability between corn and switchgrass, which was 

approximately three times lower for switchgrass than for corn. That why this study used "three 

times less variation" in the switchgrass yield calculation using a similar equation as for corn grain 

yield calculation. That means the factor accounting for the subfield variability was divided by 3, 

while the average switchgrass yield was maintained either at 10 Mg/ha, which is more typical for 

the better soils in the Iowa watersheds that are the subject of the current study or 5 Mg/ha 

depending on the scenario. 
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Figure B-1: Variability in yield for switchgrass and corn as in the study by Hao et al. (2016). Yield 

is given in Mg/ha for two years with averaged and standard deviations. 
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3. Economic assumptions and results 

Buena Vista 
County (North 
Raccoon River 
watershed) 

Unit 2013 2014 2015 2016 2017 2018 

Type of satellite 
data 

 Landsat Landsat Landsat  Sentinel Sentinel Sentinel  

Producer Price 
Index (farming 
industry) (Bureau of 

Labor Statistics, 
2020) 

 195.3 197.4 173.8 157.0 161.8 160.9 

Corn grain yield 
(average county) 
(USDA, 2019) 

Mg/ha 10.10 10.80 12.70 12.60 11.80 12.10 

Land rent (Iowa 

Farm Bureau, 2019) 
$/ha 864.22 902.96 693.47 604.97 564.14 591.00 

Corn establishment 
and harvest cost 
excluding land rent 
(Duffy 2013 and 
2014; Plastina 2015, 
2016, 2017, and 
2018 ) 

$/ha 1773.41 1722.94 1535.19 1277.96 1174.94 1192.14 

Corn grain price 
(USDA, 2019) 

$/Mg 297.38 199.98 155.55 130.75 130.73 134.00 

Corn stover 
harvesting cost 
(Thompson and 
Tyner 2014) 

$/Mg 121.38 122.68 108.02 97.58 100.56 100.00 

Switchgrass 
harvesting cost 
(Jacobs et al. 2016) 

$/ha 569.27 575.39 506.6 457.63 471.62 469.00 

Corn subsidy 
($/ha) (Table B-2 
values adjusted to 
2018 USD values) 

$/ha 139.22 53.00 247.14 94.06 79.74 32.40 

Biomass price: 
$50/Mg* 

$/Mg 60.69 61.34 54.01 48.79 50.28 50.00 

Biomass price: 
$100/Mg* 

$/Mg 121.38 122.68 108.02 97.58 100.56 100.00 

Biomass price: 
$150/Mg* 

$/Mg 182.07 184.03 162.03 146.36 150.84 150.00 

Table B-1:   Cost assumptions for the Buena Vista County (North Raccoon River watershed) in 

constant 2018 USD values. 

*Note: Biomass price at the farm gate is the same for both switchgrass and corn stover. 
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Table B-2:  Subsidy assumptions for Buena Vista county. 

Buena 
Vista 
county 
corn 
subsidies 
(for North 
Raccoon 
River 
Watershed
) 

Unit 2013 2014 2015 2016 2017 2018 

Total $ 
received 
(EWG, 
2019) 

$ 8,213,849
  

3,014,779
  

15,373,089
  

6,630,557
  

5,341,158
  

2,142,565
  

Total area 
planted 
(USDA, 
2019) 

ac 177,000 172,500  166,000 170,000 166,500  164,000  

ha  71,629 69,808 67,178 68,797 67,380 66,369 

Average 
subsidy 

$/a
c 

46.4 17.5 92.6 39.0 32.1 13.1 

$/h
a 

114.7 43.2 228.8 96.4 79.3 32.4 
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Buena Vista 
County (North 
Raccoon River 
watershed) 

Unit 2013 2014 2015 2016 2017 2018 

Type of satellite 
data 

 Landsat Landsat Landsat  Sentinel Sentinel Sentinel  

Producer Price 
Index (farming 
industry) (Bureau of 

Labor Statistics, 
2020) 

 195.3 197.4 173.8 157.0 161.8 160.9 

Corn grain yield 
(average county) 
(USDA, 2019) 

Mg/ha 9.80 10.40 12.50 13.10 13.40 13.60 

Land rent (Iowa 

Farm Bureau, 2019) 
$/ha 984.39 867.38 729.12 603.02 586.26 591.00 

Corn establishment 
and harvest cost 
excluding land rent 
(Duffy 2013 and 
2014; Plastina 2015, 
2016, 2017, and 
2018 ) 

$/ha 1773.41 1722.94 1535.19 1277.96 1174.94 1192.14 

Corn grain price 
(USDA, 2019) 

$/Mg 297.38 199.98 155.55 130.75 130.73 134.00 

Corn stover 
harvesting cost 
(Thompson and 
Tyner 2014) 

$/Mg 121.38 122.68 108.02 97.58 100.56 100.00 

Switchgrass 
harvesting cost 
(Jacobs et al. 2016) 

$/ha 569.27 575.39 506.6 457.63 471.62 469.00 

Corn subsidy 
($/ha) (Table B-4 
values adjusted to 
2018 USD values) 

$/ha 141.53 71.89 240.55 145.88 52.99 39.70 

Biomass price: 
$50/Mg* 

$/Mg 60.69 61.34 54.01 48.79 50.28 50.00 

Biomass price: 
$100/Mg* 

$/Mg 121.38 122.68 108.02 97.58 100.56 100.00 

Biomass price: 
$150/Mg* 

$/Mg 182.07 184.03 162.03 146.36 150.84 150.00 

 

 

 

Table B-3: Cost assumptions for Hardin County (South Fork Iowa River Watershed) in constant 

2018 USD values. 

*Note: Biomass price at the farm gate is the same for both switchgrass and corn stover. 
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Table B-4:  Subsidy assumptions for Hardin county. 

Hardin 
county 
corn 
subsidies 
(for 
South 
Fork 
Iowa 
River) 

Unit 2013 2014 2015 2016 2017 2018 

Total $ 
received 
(EWG, 
2019) 

$ 9,061,268 4,410,884 16,985,568 11,915,875 4,040,194 2,946,823 

Total ac 
planted 
(USDA, 
2019) 

ac 192,000 186,000 188,500 197,000 189,500 183,500 

ha  77,700 75,272 76,283 79,723 76,688 74,260 

Average 
subsidy 

$/ac 47.2 23.7 90.1 60.5 21.3 16.1 

$/ha 116.6 58.6 222.7 149.5 52.7 39.7 
 

 

Table B-5:  Switchgrass production cost assumptions. 

Cost category Switchgrass (Jacobs et al. 2016)  

 Year 1 Year 2 Year 3+ 10-year 
average 

Seed ($/ac) 75.00  7.50    

Fertilizer ($/ac)  -  26.40  26.40  

Herbicide ($/ac) 13.12 6.40  6.40  

Pre-harvest 
machinery ($/ac) 

31.15  28.60  12.55  

Harvest machinery 
($/ac)  

77.80 141.40  141.40  

Total ($/ac) 197.07  210.30  186.35  189.82 

Metric Total ($/ha)    469 
 

 

 



 

 

 

Table B-6:  Profitability of fields in South Fork Iowa River Watershed. 

Scenario South Fork 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case 
for perennials 
(150 $/Mg) 

Average-price 
case for 
perennials (100 
$/Mg)  

Low-price case 
for perennials 
(50 $/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No rent 

H
ig

h
 s

w
it
c
h
g
ra

s
s
 y

ie
ld

 (
1
0
 M

g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 
b
a
s
e
d

 

o
n
 E

q
u
a

ti
o
n
 (

1
) 

 

% Area in 
perennials 
with corn 
subsidy 

  69* 
*Note: The percent 
area in perennial 
grasses for “no rent” 
and “rented land” 
scenarios was the 
same number, which 
is why that value is 
provided only once.   

35 13 14 

Average 
$/ha with 
corn 
subsidy 

903 176 1229 502 833 107 725 -2 733 

% Area in 
perennials 
without 
corn 
subsidy 

  80 46 17  

Average 
$/ha 
without 
corn 
subsidy 

788 61 1162 473 768 41 626 -101  
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Table B-6 (continued):  Profitability of fields in South Fork Iowa River Watershed.  
Scenario South Fork 

River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case 
for perennials 
(150 $/Mg) 

Average-price 
case for 
perennials (100 
$/Mg)  

Low-price case 
for perennials 
(50 $/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No rent 

H
ig

h
 s

w
it
c
h
g
ra

s
s
 y

ie
ld

 (
1
0
 M

g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 
b
a
s
e
d

 o
n
 

E
q
u

a
ti
o
n
 (

2
) 

% Area in 
perennials 
with corn 
subsidy 

  70 35 13  

Average 
$/ha with 
corn 
subsidy 

907 180 1226 499 833 106 724 -3  

% Area in 
perennials 
without 
corn 
subsidy 

  80 45 17  

Average 
$/ha 
without 
corn 
subsidy 

792 65 1198 471 768 41 625 -101  
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Table B-6 (continued):  Profitability of fields in South Fork Iowa River Watershed.  

Scenario South Fork 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case 
for perennials 
(150 $/Mg) 

Average-price 
case for 
perennials (100 
$/Mg)  

Low-price case 
for perennials 
(50 $/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No rent 
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g
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a
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 c

o
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h
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s
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% Area in 
perennials 
with corn 
subsidy 

  90 35 13  

Average 
$/ha with 
corn 
subsidy 

704 -23 1174 447 833 107 725 -2  

% Area in 
perennials 
without 
corn 
subsidy 

  92 46 17  

Average 
$/ha 
without 
corn 
subsidy 

588 -139 788 435 768 41 626 -101  
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Table B-6 (continued):  Profitability of fields in South Fork Iowa River Watershed.  

Scenario South Fork 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case 
for perennials 
(150 $/Mg) 

Average-price 
case for 
perennials (100 
$/Mg)  

Low-price case 
for perennials 
(50 $/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No rent 

 

L
o
w
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h
g
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s
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5
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g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 

b
a
s
e
d
 o

n
 

E
q
u

a
ti
o
n
 (

1
) 

 

% Area in 
perennials 
with corn 
subsidy 

  26 13 6 14 

Average 
$/ha with 
corn 
subsidy 

910 176 961 228 730 -3 710 -24 739 

% Area in 
perennials 
without 
corn 
subsidy 

  23 17 9  

Average 
$/ha 
without 
corn 
subsidy 

788 59 864 137 625 -102 596 -131  
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Table B-6 (continued):  Profitability of fields in South Fork Iowa River Watershed.  

Scenario South Fork 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case 
for perennials 
(150 $/Mg) 

Average-price 
case for 
perennials (100 
$/Mg)  

Low-price case 
for perennials 
(50 $/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No 
rent 

Rented 
land 

No rent 

 

 

L
o
w

 s
w

it
c
h
g
ra

s
s
 y

ie
ld

 (
5
 M

g
/h

a
),

 N
o
 c

o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 

% Area in 
perennials 
with corn 
subsidy 

  22 13 6  

Average 
$/ha with 
corn 
subsidy 

710 -23 770 37 730 -3 710 -24  

% Area in 
perennials 
without 
corn 
subsidy 

  28 17 9  

Average 
$/ha 
without 
corn 
subsidy 

588 -139 678 -48 625 -101 596 -131  
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Table B-7:  Profitability of fields in the Headwaters of the North Raccoon River Watershed. 

Scenario North 
Raccoon 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case for 
perennials (150 
$/Mg) 

Average-price case 
for perennials (100 
$/Mg)  

Low-price case for 
perennials (50 
$/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent 

H
ig

h
 s

w
it
c
h
g
ra

s
s
 y

ie
ld

 (
1
0
 M

g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 
b
a
s
e
d

 o
n
 

E
q
u

a
ti
o
n
 (

1
) 

 

% Area in 
perennials 
with corn 
subsidy 

  83 
*Note: The percent area 
in perennial grasses for 
“no rent” and “rented 
land” scenarios was the 
same number, which is 
why that value is 
provided only once.   

52 17 18 

Average 
$/ha with 
corn 
subsidy 

809 105 1282 579 827 124 683 -20 694 

% Area in 
perennials 
without 
corn 
subsidy 

  85 66 22  

Average 
$/ha 
without 
corn 
subsidy 

701 -2 1259 556 783 79 599 -105  
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Table B-7 (continued):  Profitability of fields in the Headwaters of the North Raccoon River Watershed. 

Scenario North 
Raccoon 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case for 
perennials (150 
$/Mg) 

Average-price case 
for perennials (100 
$/Mg)  

Low-price case for 
perennials (50 
$/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent 

H
ig

h
 s

w
it
c
h
g
ra

s
s
 y

ie
ld

 (
1
0
 M

g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 
b
a
s
e
d

 o
n
 

E
q
u

a
ti
o
n
 (

2
) 

% Area in 
perennials 
with corn 
subsidy 

  83 51 17  

Average 
$/ha with 
corn 
subsidy 

814 111 1277 578 827 125 683 -21  

% Area in 
perennials 
without 
corn 
subsidy 

  85 65 23  

Average 
$/ha 
without 
corn 
subsidy 

706 14 1254 554 782 80 598 -105  
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Table B-7 (continued):  Profitability of fields in the Headwaters of the North Raccoon River Watershed. 

Scenario North 
Raccoon 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case for 
perennials (150 
$/Mg) 

Average-price case 
for perennials (100 
$/Mg)  

Low-price case for 
perennials (50 
$/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent 

 

H
ig

h
 s

w
it
c
h
g
ra

s
s
 y

ie
ld

 (
1
0
 M

g
/h

a
),

 N
o
 c

o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 

% Area in 
perennials 
with corn 
subsidy 

  87 52 17  

Average 
$/ha with 
corn 
subsidy 

626 -77 1221 518 827 124 683 -20  

% Area in 
perennials 
without 
corn 
subsidy 

  89 66 22  

Average 
$/ha 
without 
corn 
subsidy 

519 -185 1203 499 783 79 599 -105  
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Table B-7 (continued):  Profitability of fields in the Headwaters of the North Raccoon River Watershed. 

Scenario North 
Raccoon 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case for 
perennials (150 
$/Mg) 

Average-price case 
for perennials (100 
$/Mg)  

Low-price case for 
perennials (50 
$/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent 

 

L
o
w

 s
w

it
c
h
g
ra

s
s
 y

ie
ld

 (
5
 M

g
/h

a
),

 C
o
rn

 s
to

v
e
r 

h
a
rv

e
s
t 

b
a
s
e
d
 o

n
 

E
q
u

a
ti
o
n
 (

1
) 

 

% Area in 
perennials 
with corn 
subsidy 

  24 17 10 18 

Average 
$/ha with 
corn 
subsidy 

809 105 910 206 683 -21 652 -52 694 

% Area in 
perennials 
without 
corn 
subsidy 

  29 23 14  

Average 
$/ha 
without 
corn 
subsidy 

701 -2 666 131 598 -105 556 -147  
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Table B-7 (continued):  Profitability of fields in the Headwaters of the North Raccoon River Watershed. 

Scenario North 
Raccoon 
River 
Watershed  

Base case 
(corn) 

Convert only parts of land where profit is higher or loss is lower 

High-price case for 
perennials (150 
$/Mg) 

Average-price case 
for perennials (100 
$/Mg)  

Low-price case for 
perennials (50 
$/Mg)  

Conservation 
plot  

Average for 
2013-2018 

No 
rent 

Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent Rented 
land 

No rent 

 

L
o
w

 s
w

it
c
h
g
ra

s
s
 y

ie
ld

 (
5
 M

g
/h

a
),

 N
o
 c

o
rn

 

s
to

v
e
r 

h
a
rv

e
s
t 

% Area in 
perennials 
with corn 
subsidy 

  28 17 10  

Average 
$/ha with 
corn 
subsidy 

626 -77 736 33 683 -21 652 -52  

% Area in 
perennials 
without 
corn 
subsidy 

  34 23 14  

Average 
$/ha 
without 
corn 
subsidy 

518 -185 666 -37 598 -105 556 -147  

 

 



 

 

4. Variations in grass production costs depending on the shape of the field 

The assessment is based on the Science-based Trials of Rowcrops Integrated with Prairie 

Strips (STRIPS; IS, 2020) field geometries. The STRIPS project has established native prairie 

strips in Iowa cropland and has illustrated environmental benefits from such prairie strips 

(Schulte et al. 2017, S.T.R.I.P.S. Team 2019). Maps of fields that were used in the actual analysis 

are not presented to maintain the confidentiality of producers. The costs of growing native prairie 

and switchgrass differ because of the different harvesting efficiency, as discussed by Griffel et al. 

(2020). 

Table B-8:  Variation in switchgrass production cost due to different sizes of perennial grass fields 

as illustrated by STRIPS project perennial buffer strips. 

  Farm 1  Farm 2  Farm 3  Farm 4  Farm 5  

 
Farm 
landscape description 

Two 
compact 
perennial 
strips    

More than 
ten perennial 
strips of 
small area 
and complex 
shapes 
  

More than 
ten perennial 
strips, some 
with complex 
geometry but 
most of large 
area    

 
Ten 
perennial 
strips with 
large 
perimeter for 
small area 

Five buffer 
strips, 
ranging from 
very small to 
extensive  
  

Efficiency factor 69 % 58% 77% 62% 68% 

Perennial crop % area  10%   
(2.29 ha or 
5.65 ac.)  

18%  
(5.51 ha or 
13.61 ac.)  

27%  
(51.36 ha or 
126.91 ac.)  

6%  
(3.88 ha or 
9.59 ac.)  

42%  
(6.73 ha 
16.63 ac.)  

Cost of switchgrass 
production with 
average rent 

$1058/ha 
($428/ac.)  

$1132/ha 
($458/ac.)  

$1016/ha 
($411/ac.)  

$1100/ha  
($445/ac.)  

$1063/ha 
($430/ac.)  

 

 



 

 

Appendix C 

 

Supplementary Data for Chapter 4  

Decision support tool processing code 

Utility calculation 

In [214]: 

# Import necessary packages for data inputs 

 

import rasterio 

import rasterio.features 

import rasterio.warp 

import pandas as pd 

import geopandas as gpd 

import numpy as np 

import matplotlib.pyplot as plt 

import georasters as gr 

import os 

from rasterio import features 

import geopandas as gpd 

from geopandas import GeoSeries, GeoDataFrame 

Rasterization function 

In [215]: 

env = gpd.read_file("C:/Users/VAZHV/Desktop/Vector_input/Export_Output.shp") 

 

def rasterize(gdf,out,in_layer,template,outDir): 

    rst=rasterio.open(template) 

    meta=rst.meta.copy() 

    print(meta) 

    #meta.update(nodata=-999) 

    os.chdir(outDir) 

    with rasterio.open(out,'w+',**meta) as out: 

        out_arr=out.read(1) 
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        shapes=((geom,value)for geom,value in zip(gdf.geometry,in_layer)) 

        burned=features.rasterize(shapes=shapes,fill=0,out=out_arr,transform=out.transform) 

        out.write_band(1,burned) 

    return burned[:100, 100:200] 

template = "C:/Users/VAZHV/Desktop/Raster_input/Profit_2018_cs_old.tif" 

outDir = "C:/Users/VAZHV/Desktop/Raster_input" 

Soil quality 

Change in soil organic carbon as calculated by AgSolver. Ranges from -1518 lbC/ac/yr tto 
365.5. 

In [216]: 

env = gpd.read_file("C:/Users/VAZHV/Desktop/Vector_input/Export_Output.shp") 

 

####Annual#### 

soil_cs=rasterize(env, "soil_cs.tif", env.a_dsoc_cs, template, outDir) 

 

 

####Switchgrass###        

soil_swg=rasterize(env, "soil_swg.tif", env.a_dsoc_swg, template, outDir) 

soil_swg = np.multiply(soil_swg, -1) 

 

max_soil_swg = np.nanmax(soil_swg) 

max_soil_cs = np.nanmax(soil_cs) 

max_soil= max(max_soil_swg, max_soil_cs) # select the extreme value of that indicator 

 

soil_util_c = (soil_cs/max_soil) 

soil_util_c=np.where(soil_util_c<0, 0, soil_util_c) #Specify that if the values are negative - that is 

zero utility 

 

 

soil_util_s = (soil_swg/max_soil) 

soil_util_s=np.where(soil_util_s<0, 0, soil_util_s) #Specify that if the values are negative - that is 

zero utility 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 
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Profitability 

Annual crop and switchgrass inputs are based on the profitability calculations from Google 
Earth Engine. 

In [217]: 

#####Annual crops#### 

profit_c = rasterio.open("C:/Users/VAZHV/Desktop/Raster_input/Profit_2018_cs_old.tif") 

print(profit_c.bounds) 

 

# Convert the raster into a numpy array so that further calculations can be carried out 

ar_profit_c = profit_c.read(1)[:100, 100:200] 

 

#Find maximum value of the numpy array,  

max_prof_c = np.nanmax(ar_profit_c) 

 

 

# Visualize the indicator 

#plt.figure(figsize=(10,4)) 

plt.imshow(ar_profit_c) 

plt.colorbar() 

plt.title('Profit corn($ per 100 sq m)') 

plt.xlabel('Column #') 

plt.ylabel('Row #') 

plt.show() 

 

#####Switchgrass#####       

profit_s=rasterio.open("C:/Users/VAZHV/Desktop/Raster_input/Profit_2018_swg_100.tif") 

ar_profit_s = profit_s.read(1)[:100, 100:200] 

max_prof_s = np.nanmax(ar_profit_s) 

 

max_prof= max(max_prof_c, max_prof_s) # select the extreme value of that indicator  

 

prof_norm_c = ar_profit_c/max_prof 

prof_util_c=np.where(prof_norm_c<0, 0, prof_norm_c) # Specify that when unprofitable - zero 

utility 

 

prof_norm_s = ar_profit_s/max_prof 

prof_util_s = np.where(prof_norm_s<0, 0, prof_norm_s) 

BoundingBox(left=-94.5902637980469, bottom=41.96479849764345, right=-94.5511870831877, 

top=41.99390391284892) 
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Independence 

Assume average corn subsidy of 100/ℎ𝑎 𝑔𝑖𝑣𝑒𝑛 a 800/ha profit without subsidy - score of 
0.125 Assume average switchgrass subsidy as 100/ha for 2 years of establishment averaged 
over 10 years of total growth with 8 years of harvest given a 400/ha profit without subsidy - 
score of 0.25. The best score is 0, the worst score is 1 

In [218]: 

### Annual #### 

 

env['ind_cs'] = 0.125 

ind_cs = rasterize(env, "ind_cs.tif", env.ind_cs, template, outDir) 

ind_util_c = (1-ind_cs) 

 

### Switchgrass #### 

 

env['ind_swg'] = 0.25 

ind_swg = rasterize(env, "ind_swg.tif", env.ind_swg, template, outDir) 

ind_util_s = (1-ind_swg) 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 
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{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Financial stability 

Based on the economic assessment, assume that corn profitability can vary between 25/ha 
to 850/ha with the score of 825 (assume that the profit is with subsidy, so crop subsidy 
mitigates some risk). Assume that switchgrass markets might not be functional, leading 
topaying the establishment cost but not getting the profit; thus the profit ranging from -400/ℎ𝑎 
𝑡𝑜 400/ha to 800/ha in case of a good market with the score of 1200 Best score is 0, worst 
score is =(850/ℎ𝑎−(− 850/ha−(−1600/ha for corn establishment cost)) 2450 

In [219]: 

### Annual #### 

 

env['fin_cs'] = 825 

fin_cs = rasterize(env, "fin_cs.tif", env.fin_cs, template, outDir) 

fin_util_c = (1-fin_cs/2450) 

 

### Switchgrass #### 

 

env['fin_swg'] = 1200 

fin_swg = rasterize(env, "fin_swg.tif", env.fin_swg, template, outDir) 

fin_util_s = (1-fin_swg/2450) 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Yield 

Both inputs are provided based on the Google Earth Engine estimates. Often, farmers 
implied corn or soybean yield when discussing this priority, so in other versions of the model, 
yield for the "switchgrass" layer can be set to zero. 

In [220]: 

#####Annual crops#### 

yield_c = rasterio.open("C:/Users/VAZHV/Desktop/Raster_input/Yield_2018_cs_old.tif") 

# Convert the raster into a numpy array so that further calculations can be carried out 
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ar_yield_c = yield_c.read(1)[:100, 100:200] 

 

#Find maximum value of the numpy array,  

max_yield_c = np.nanmax(ar_yield_c) 

 

####Switchgrass#####       

yield_s=rasterio.open("C:/Users/VAZHV/Desktop/Raster_input/Yield_2018_swg_old.tif") 

ar_yield_s = yield_s.read(1)[:100, 100:200] 

max_yield_s = np.nanmax(ar_yield_s) 

 

max_yield= max(max_yield_c, max_yield_s) # select the extreme value of that indicator  

 

yie_util_c = ar_yield_c/max_yield 

yie_util_s = ar_yield_s/max_yield 

 

plt.imshow(ar_yield_s) 

plt.colorbar() 

plt.title('Yield switchgrass (Mg/ha)') 

plt.xlabel('Column #') 

plt.ylabel('Row #') 

plt.show() 
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Diversification 

Based on the market assessment, assume indicator value 2 for annual crops and indicator 
value 4 for switchgrass. Assume the worst value is 0, the best value is 5 

In [221]: 

### Annual #### 

 

env['div_cs'] = 2 

div_cs = rasterize(env, "div_cs.tif", env.div_cs, template, outDir) 

div_util_c = (div_cs/5) 

 

### Switchgrass #### 

 

env['div_swg'] = 4 

div_swg = rasterize(env, "div_swg.tif", env.div_swg, template, outDir) 

div_util_s = (div_swg/5) 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Water quality 

Nitrate runoff is based on teh AgSolver analysis, ranges from 0 to 144.88 in teh specified 
example lbN/ac/yr, the greater - the worse 

In [222]: 

### Annual #### 

wat_cs = rasterize(env, "wat_cs.tif", env.a_no3_sw_1, template, outDir) 

max_wat_cs = np.nanmax(wat_cs) 

 

### Switchgrass #### 

wat_swg = rasterize(env, "wat_swg.tif", env.a_no3_swg, template, outDir) 

max_wat_swg = np.nanmax(wat_swg) 

 

max_wat = max(max_wat_swg, max_wat_cs) 

 

wat_util_c = (1-wat_cs/max_wat) 

wat_util_s = (1-wat_swg/max_wat) 
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{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Wildlife and pristine nature 

Based on Schulte et al 2017 assume 1 for switchgrass and 0.33 (3 times less) for annual 
crops as based on species diversity estimates 

In [223]: 

### Annual #### 

 

env['wil_cs'] = 0.33 

wil_cs = rasterize(env, "wil_cs.tif", env.wil_cs, template, outDir) 

wil_util_c = wil_cs 

 

### Switchgrass #### 

 

env['wil_swg'] = 1 

wil_swg = rasterize(env, "wil_swg.tif", env.wil_swg, template, outDir) 

wil_util_s = wil_swg 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

CO2 emissions 

Based on the FEAT model, assume annual crop emissions are 2612 kgCo2e/yr/ha and 2293 
kgCO2e/yr with 0 being the best value, 2612 - the worst 

In [224]: 

### Annual #### 

 

env['co2_cs'] = 2612 
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co2_cs = rasterize(env, "co2_cs.tif", env.co2_cs, template, outDir) 

co2_util_c = (1-co2_cs/2612) 

 

### Switchgrass #### 

 

env['co2_swg'] = 2293 

co2_swg = rasterize(env, "co2_swg.tif", env.co2_swg, template, outDir) 

co2_util_s = (1-co2_swg/2612) 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Erosion potential 

Water erosion rate as calculated by AgSolver, ranges from 0 to 50 tn/ac/yr. 

In [225]: 

### Annual #### 

ero_cs = rasterize(env, "ero_cs.tif", env.watero_cs, template, outDir) 

max_ero_cs = np.nanmax(ero_cs) 

 

### Switchgrass #### 

ero_swg = rasterize(env, "ero_swg.tif", env.watero_swg, template, outDir) 

max_ero_swg = np.nanmax(ero_swg) 

 

max_ero = max(max_ero_swg, max_ero_cs) 

 

ero_util_c = (1-ero_cs/max_ero) 

ero_util_s = (1-ero_swg/max_ero) 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 
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Food production 

The amount of land for food production. Assume 0 for switchgrass and 0.5 for annual crops. 

In [226]: 

### Annual #### 

 

env['food_cs'] = 0.5 

food_cs = rasterize(env, "food_cs.tif", env.food_cs, template, outDir) 

food_util_c = food_cs 

 

### Switchgrass #### 

 

env['food_swg'] = 0 

food_swg = rasterize(env, "food_swg.tif", env.food_swg, template, outDir) 

food_util_s = food_swg 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Rural Development 

The number of rural jobs. Assume that for corn: machine operator+ fertilizer/seed seller + co-
op rep + farm manager/landowner = 4; for switchgrass: machine operator + seed seller + 
market 1 + market 2 + depot operator + farm manager/landowner = 6. The worst is 0 the best 
is 6 

In [227]: 

### Annual #### 

 

env['rur_cs'] = 4 

rur_cs = rasterize(env, "rur_cs.tif", env.rur_cs, template, outDir) 

rur_util_c = rur_cs/6 

 

### Switchgrass #### 

 

env['rur_swg'] = 6 

rur_swg = rasterize(env, "food_swg.tif", env.rur_swg, template, outDir) 

rur_util_s = rur_swg/6 
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{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Positive image 

Consumer-approved practices. Assume 0.8 for switchgrass, 0.4 for corn 

In [228]: 

### Annual #### 

 

env['img_cs'] = 0.4 

img_cs = rasterize(env, "img_cs.tif", env.img_cs, template, outDir) 

img_util_c = img_cs 

 

### Switchgrass #### 

 

env['img_swg'] = 0.8 

img_swg = rasterize(env, "img_swg.tif", env.img_swg, template, outDir) 

img_util_s = img_swg 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Farming lifestyle 

Ability to maintain a family operation. Assumption: 0.5 for switchgrass and 0.3 for corn 

In [229]: 

### Annual #### 

 

env['lif_cs'] = 0.3 

lif_cs = rasterize(env, "lif_cs.tif", env.lif_cs, template, outDir) 

lif_util_c = lif_cs 
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### Switchgrass #### 

 

env['lif_swg'] = 0.5 

lif_swg = rasterize(env, "lif_swg.tif", env.lif_swg, template, outDir) 

lif_util_s = lif_swg 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

{'driver': 'GTiff', 'dtype': 'float64', 'nodata': None, 'width': 435, 'height': 324, 'count': 1, 'crs': 

CRS.from_dict(init='epsg:4326'), 'transform': Affine(8.983152841195215e-05, 0.0, -

94.5902637980469, 

       0.0, -8.983152841195215e-05, 41.99390391284892)} 

Inheritability and young farmers 

Land value as function of profit and management. Use as a sum of profit and soil organic 
carbon multiplied by 0.01 as a factor for improved land quality 

In [230]: 

#####Annual crops#### 

factor_cs = soil_cs*0.01 

inh_cs = np.add(ar_profit_c, factor_cs) 

  

max_inh_c = np.nanmax(inh_cs) 

 

 

factor_swg = soil_swg*0.01 

inh_swg = np.add(ar_profit_s, factor_swg) 

max_inh_s = np.nanmax(inh_swg) 

 

 

max_inh = max(max_inh_c, max_inh_s) 

 

 

 

inh_norm_c = inh_cs/max_inh 

inh_util_c=np.where(inh_norm_c<0, 0, inh_norm_c) # Specify that when unprofitable - zero utility 

 

inh_norm_s = inh_swg/max_inh 

inh_util_s = np.where(inh_norm_s<0, 0, inh_norm_s) 
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Utility evaluation 

Annual crop only 

In [231]: 

# Total utility 

weight_soil_c = soil_util_c*0.1 

weight_prof_c = prof_util_c*0.133 

weight_ind_c = ind_util_c*0 

weight_fin_c = fin_util_c*0.133 

weight_yie_c = yie_util_c*0.133 

weight_div_c = div_util_c*0 

weight_wil_c = wil_util_c*0 

weight_co2_c = co2_util_c*0.1 

weight_wat_c = wat_util_c*0.1 

weight_ero_c = ero_util_c*0.1 

weight_food_c = food_util_c*0 

weight_rur_c = rur_util_c*0 

weight_img_c = img_util_c*0.1 

weight_lif_c = lif_util_c*0.1 

weight_inh_c = inh_util_c*0 

 

 

tot_util_c=weight_soil_c+weight_prof_c+weight_ind_c+weight_fin_c+weight_yie_c+weight_div_c

+weight_wil_c+weight_co2_c+weight_wat_c+weight_ero_c+weight_food_c+weight_rur_c+weight

_img_c+weight_lif_c+weight_inh_c 

 

plt.imshow(tot_util_c) 

print('Total utility all corn/soybeans',np.nansum(tot_util_c)) 

plt.colorbar() 

plt.title('Total Utility Corn/Soybeans') 

plt.xlabel('Column #') 

plt.ylabel('Row #') 

plt.clim(0,1) 

plt.show() 

 

print('Soil quality utility for corn/soybeans', np.nansum(soil_util_c)) 

print('Profitability utility for corn/soybeans', np.nansum(prof_util_c)) 

print('Independence utility for corn/soybeans', np.nansum(ind_util_c)) 

print('Financial stability utility for corn/soybeans', np.nansum(fin_util_c)) 
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print('Yield utility for corn/soybeans', np.nansum(yie_util_c)) 

print('Diversification utility for corn/soybeans', np.nansum(div_util_c)) 

print('Wildlife and pristine nature utility for corn/soybeans', np.nansum(wil_util_c)) 

print('CO2 utility for corn/soybeans', np.nansum(co2_util_c)) 

print('Water quality utility for corn/soybeans', np.nansum(wat_util_c)) 

print('Erosion potential utility for corn/soybeans', np.nansum(ero_util_c)) 

print('Food production utility for corn/soybeans', np.nansum(food_util_c)) 

print('Rural development utility for corn/soybeans', np.nansum(rur_util_c)) 

print('Positive image utility for corn/soybeans', np.nansum(img_util_c)) 

print('Farming lifestyle utility for corn/soybeans', np.nansum(lif_util_c)) 

print('Inheritability and young farmers utility for corn/soybeans', np.nansum(inh_util_c)) 

 

# Output table with values for every cell (for Roni's exact optimization) 

# Convert the raster into a numpy array so that further calculations can be carried out 

ar_profit_c = profit_c.read(1) 

 

row_num = ar_profit_c.shape[0] 

col_num = ar_profit_c.shape[1] 

 

points=[] 

 

#for row in range (0,row_num-1): 

#for col in range (0,col_num-1): 

#            px,py=profit_c.xy(row,col) 

#            #Use append as a way of creating a list of lists in "points" 

#            points.append([px,py,ar_profit_c[row,col], soil_cs[row, col], ind_cs[row, col], fin_cs[row, 

col], yield_c[row, col], div_cs[row, col], wil_cs[row, col], co2_cs[row, col], wat_cs[row,col], 

ero_cs[row, col], food_cs[row, col], rur_cs[row, col], img_cs[row, col], lif_cs[row, col], inh_cs[row, 

col]]) 

#            col+=1 

#        row+=1 

#out_coord="C:/Users/VAZHV/Desktop/Raster_input/Coordinates_sustainability_indicators_corn.

csv"  

#df=pd.DataFrame.from_records(points) 

#df.columns=['x','y','profit cs','soil quality cs', 'independence cs', 'financial stability cs', 'yield cs', 

'diversification cs', 'wildlife cs', 'co2 cs', 'water quality cs', 'erosion cs', 'food production cs', 'rural 

development cs', 'positive image cs', 'lifestyle cs', 'inheritability cs'] 

#print(points[0]) 

#print(df.head()) 

#df.to_csv(out_coord,index=False) 

Total utility all corn/soybeans 4080.404733038932 
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Soil quality utility for corn/soybeans 3305.5532170039896 

Profitability utility for corn/soybeans 2015.773785371442 

Independence utility for corn/soybeans 8806.75 

Financial stability utility for corn/soybeans 6785.530612244899 

Yield utility for corn/soybeans 8122.183063344403 

Diversification utility for corn/soybeans 3818.4000000000005 

Wildlife and pristine nature utility for corn/soybeans 3150.1800000000003 

CO2 utility for corn/soybeans 454.0 

Water quality utility for corn/soybeans 2174.0320913202668 

Erosion potential utility for corn/soybeans 7856.643336529241 

Food production utility for corn/soybeans 4773.0 

Rural development utility for corn/soybeans 6363.999999999999 

Positive image utility for corn/soybeans 3818.4000000000005 

Farming lifestyle utility for corn/soybeans 2863.7999999999993 

Inheritability and young farmers utility for corn/soybeans 2040.9074908659904 

Switchgrass only 

In [232]: 

# Total utility 

weight_soil_s = soil_util_s*0.1 

weight_prof_s = prof_util_s*0.133 
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weight_ind_s = ind_util_s*0 

weight_fin_s = fin_util_s*0.133 

weight_yie_s = yie_util_s*0.133 

weight_div_s = div_util_s*0 

weight_wil_s = wil_util_s*0 

weight_co2_s = co2_util_s*0.1 

weight_wat_s = wat_util_s*0.1 

weight_ero_s = ero_util_s*0.1 

weight_food_s = food_util_s*0 

weight_rur_s = rur_util_s*0 

weight_img_s = img_util_s*0.1 

weight_lif_s = lif_util_s*0.1 

weight_inh_s = inh_util_s*0 

 

 

tot_util_s=weight_soil_s+weight_prof_s+weight_ind_s+weight_fin_s+weight_yie_s+weight_div_s

+weight_wil_s+weight_co2_s+weight_wat_s+weight_ero_s+weight_food_s+weight_rur_s+weight

_img_s+weight_lif_s+weight_inh_s 

 

plt.imshow(tot_util_s) 

print('Total utility all switchgrass' ,np.nansum(tot_util_s) ) 

plt.colorbar() 

plt.title('Total Utility Switchgrass') 

plt.xlabel('Column #') 

plt.ylabel('Row #') 

plt.clim(0,1) 

plt.show() 

 

print('Soil quality utility for switchgrass', np.nansum(soil_util_s)) 

print('Profitability utility for switchgrass', np.nansum(prof_util_s)) 

print('Independence utility for switchgrass', np.nansum(ind_util_s)) 

print('Financial stability utility for switchgrass', np.nansum(fin_util_s)) 

print('Yield utility for switchgrass', np.nansum(yie_util_s)) 

print('Diversification utility for switchgrass', np.nansum(div_util_s)) 

print('Wildlife and pristine nature utility for switchgrass', np.nansum(wil_util_s)) 

print('CO2 utility for switchgrass', np.nansum(co2_util_s)) 

print('Water quality utility for switchgrass', np.nansum(wat_util_s)) 

print('Erosion potential utility for switchgrass', np.nansum(ero_util_s)) 

print('Food production utility for switchgrass', np.nansum(food_util_s)) 

print('Rural development utility for switchgrass', np.nansum(rur_util_s)) 

print('Positive image utility for switchgrass', np.nansum(img_util_s)) 

print('Farming lifestyle utility for switchgrass', np.nansum(lif_util_s)) 

print('Inheritability and young farmers utility for switchgrass', np.nansum(inh_util_s)) 
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# Output table with values for every cell (for Roni's exact optimization) 

# Convert the raster into a numpy array so that further calculations can be carried out 

ar_profit_c = profit_c.read(1) 

 

row_num = ar_profit_c.shape[0] 

col_num = ar_profit_c.shape[1] 

 

points=[] 

 

#for row in range (0,row_num-1): 

#        for col in range (0,col_num-1): 

#            px,py=profit_c.xy(row,col) 

#            #Use append as a way of creating a list of lists in "points" 

#            points.append([px,py,swg_prof[row,col], soil_swg[row, col], ind_swg[row, col], 

fin_swg[row, col], yie_swg[row, col], div_swg[row, col], wil_swg[row, col], co2_swg[row, col], 

wat_swg[row,col], ero_swg[row, col], food_swg[row, col], rur_swg[row, col], img_swg[row, col], 

lif_swg[row, col], inh_swg[row, col]]) 

#            col+=1 

#        row+=1 

#out_coord="C:/Users/VAZHV/Desktop/Raster_input/Coordinates_sustainability_indicators_switc

hgrass.csv"  

#df=pd.DataFrame.from_records(points) 

#df.columns=['x','y','profit swg','soil quality swg', 'independence swg', 'financial stability swg', 'yield 

swg', 'diversification swg', 'wildlife swg', 'co2 swg', 'water quality swg', 'erosion swg', 'food 

production swg', 'rural development swg', 'positive image swg', 'lifestyle swg', 'inheritability swg'] 

#print(points[0]) 

#print(df.head()) 

#df.to_csv(out_coord,index=False) 

Total utility all switchgrass 4671.815531592435 
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Soil quality utility for switchgrass 7417.768630234208 

Profitability utility for switchgrass 0.0 

Independence utility for switchgrass 7613.5 

Financial stability utility for switchgrass 5324.408163265308 

Yield utility for switchgrass 6113.0137260663705 

Diversification utility for switchgrass 7636.800000000001 

Wildlife and pristine nature utility for switchgrass 9546.0 

CO2 utility for switchgrass 1619.839969372128 

Water quality utility for switchgrass 4797.324574628474 

Erosion potential utility for switchgrass 7692.300095877277 

Food production utility for switchgrass 0.0 

Rural development utility for switchgrass 9546.0 

Positive image utility for switchgrass 7636.800000000001 

Farming lifestyle utility for switchgrass 4773.0 

Inheritability and young farmers utility for switchgrass 0.0 

Maximized pixel values 

In [233]: 

max_util = np.greater(tot_util_c, tot_util_s) 

plt.imshow(max_util) 

Out[233]: 
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<matplotlib.image.AxesImage at 0x139213d4f28> 

 

In [234]: 

#Calculate the total utility given the crop plan - to be maximized 

import numpy.ma as ma 

 

cornsoy = ma.masked_where(max_util==0, tot_util_c) 

switchgrass = ma.masked_where(max_util==1, tot_util_s) 

field = ma.filled(cornsoy, switchgrass) 

plt.imshow(field) 

plt.colorbar() 

plt.clim(0,1) 

util = np.nansum(field) 

print('Total field utility:', util) 

 

#Calculate the total utility given the crop plan - to be maximized 

import numpy.ma as ma 

switchgrass=ma.masked_where(tot_util_s<tot_util_c, tot_util_s) 

cornsoy=ma.masked_where(tot_util_s>tot_util_c, tot_util_c) 

field=ma.filled(cornsoy, switchgrass) 

fin_utility=np.nansum(field) 

print('Total field utility:', fin_utility) 

 

cornsoy = ma.masked_where(max_util==0, soil_util_c) 

switchgrass = ma.masked_where(max_util==1, soil_util_s) 

field = ma.filled(switchgrass, cornsoy) 
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util = np.nansum(field) 

print('Total soil quality utility', util) 

       

cornsoy = ma.masked_where(max_util==0, prof_util_c) 

switchgrass = ma.masked_where(max_util==1, prof_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total profitability utility', util) 

 

cornsoy = ma.masked_where(max_util==0, ind_util_c) 

switchgrass = ma.masked_where(max_util==1, ind_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total independence utility', util) 

 

cornsoy = ma.masked_where(max_util==0, fin_util_c) 

switchgrass = ma.masked_where(max_util==1, fin_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total financial stability utility', util) 

 

cornsoy = ma.masked_where(max_util==0, yie_util_c) 

switchgrass = ma.masked_where(max_util==1, yie_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total yield utility', util) 

 

cornsoy = ma.masked_where(max_util==0, div_util_c) 

switchgrass = ma.masked_where(max_util==1, div_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total diversification utility', util) 

 

cornsoy = ma.masked_where(max_util==0, wil_util_c) 

switchgrass = ma.masked_where(max_util==1, wil_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total wildlife and pristine nature utility', util) 

 

cornsoy = ma.masked_where(max_util==0, co2_util_c) 

switchgrass = ma.masked_where(max_util==1, co2_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 
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print('Total CO2 utility', util) 

 

cornsoy = ma.masked_where(max_util==0, wat_util_c) 

switchgrass = ma.masked_where(max_util==1, wat_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total water quality utility', util) 

 

cornsoy = ma.masked_where(max_util==0, ero_util_c) 

switchgrass = ma.masked_where(max_util==1, ero_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total erosion potential utility', util) 

 

cornsoy = ma.masked_where(max_util==0, food_util_c) 

switchgrass = ma.masked_where(max_util==1, food_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total food production utility', util) 

 

cornsoy = ma.masked_where(max_util==0, rur_util_c) 

switchgrass = ma.masked_where(max_util==1, rur_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total rural development utility', util) 

 

cornsoy = ma.masked_where(max_util==0, img_util_c) 

switchgrass = ma.masked_where(max_util==1, img_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total positive image utility', util) 

 

cornsoy = ma.masked_where(max_util==0, lif_util_c) 

switchgrass = ma.masked_where(max_util==1, lif_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total farming lifestyle utility', util) 

 

cornsoy = ma.masked_where(max_util==0, inh_util_c) 

switchgrass = ma.masked_where(max_util==1, inh_util_s) 

field = ma.filled(switchgrass, cornsoy) 

util = np.nansum(field) 

print('Total inheritability and young farmers utility', util) 



210 

 

 

 

#Need to convert from float 64 format to int 32 to be able to process further 

max_util = np.int32(max_util) 

 

from rasterio.features import sieve, shapes 

from shapely.geometry import Polygon, shape 

 

#Print the number of shapes in the source raster 

print("Number of subfields: %d" % len(list(shapes(max_util)))) 

 

#shapes= shapes(max_util, connectivity=4) 

#gdf = gpd.GeoDataFrame(shapes) 

#gdf.columns=['geometry', 'value'] 

#gdf['perimeter'] = gdf['geometry'].length 

#gdf['area']= gdf['geometry'].area 

#print(gdf) 

 

#print(perimeter) 

 

# Detailed utility by indicator 

Total field utility: 4683.793569778185 

Total field utility: 4683.793569778185 

Total soil quality utility 7248.066444776192 

Total profitability utility 274.3042957500676 

Total independence utility 7664.25 

Total financial stability utility 5386.551020408164 

Total yield utility 6238.40806233531 

Total diversification utility 7474.4000000000015 

Total wildlife and pristine nature utility 9273.98 

Total CO2 utility 1570.25574272588 

Total water quality utility 4787.088304975232 

Total erosion potential utility 7670.9539789069995 

Total food production utility 203.0 

Total rural development utility 9410.666666666666 

Total positive image utility 7474.4000000000015 

Total farming lifestyle utility 4691.8 

Total inheritability and young farmers utility 274.8863457119887 

Number of subfields: 20 
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Smoothing heuristic + sieving 

In [235]: 

row_num = max_util.shape[0] 

col_num = max_util.shape[1] 

smoothed_util = max_util 

 

#2 pixels over 

for row in range (0, row_num-3): 

    for col in range (0, col_num-1): 

        if max_util[row, col] == max_util[row+3, col]: 

            smoothed_util[row+1:row+2, col] = max_util[row, col] 

 

for row in range (0, row_num-1): 

    for col in range (0, col_num-3): 

        if max_util[row, col] ==max_util[row, col+3]: 

            smoothed_util[row, col+1:col+2]=max_util[row, col] 

             

plt.imshow(smoothed_util)     

 

cornsoy = ma.masked_where(smoothed_util==0, tot_util_c) 

switchgrass = ma.masked_where(smoothed_util==1, tot_util_s) 

field = ma.filled(switchgrass, cornsoy) 
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util = np.nansum(field) 

 

print('Total utility', util) 

 

from rasterio.features import sieve, shapes 

import matplotlib.patches as mpatches 

 

#Need to convert from float 64 format to int 32 to be able to process further 

smoothed_util = np.int32(smoothed_util) 

 

#Print the number of shapes in the source raster 

print("Number of subfields: %d" % len(list(shapes(smoothed_util)))) 

 

#Create masks for corn and switchgrass to sieve out the subfields - small for switchgrass, large 

for corn 

sieve20 = sieve(smoothed_util, 20, connectivity=4) 

mask_s2=ma.masked_where(sieve20==[True],sieve20) 

 

sieve150 = sieve(smoothed_util, 150, connectivity=4) 

mask_c2 = ma.masked_where(sieve150==[False], sieve150) 

 

sieved_field=ma.filled(mask_s2, mask_c2) 

 

non_sieved2=len(list(shapes(mask_s2))) 

print("Sieved switchgrass shapes: %d" % non_sieved2) 

sieved2=len(list(shapes(mask_c2)))# 

print("Sieved corn shapes: %d" % sieved2) 

 

sieved_switchgrass=ma.masked_where(sieved_field==0,tot_util_c) 

sieved_cornsoy=ma.masked_where(sieved_field==1,tot_util_s) 

sieved_util=ma.filled(sieved_cornsoy, sieved_switchgrass) 

 

sieved_tot=len(list(shapes(sieved_field))) 

print("Sieved total shapes: %d" % sieved_tot) 

print("Sieved utility:", np.nansum(sieved_util)) 

 

plt.imshow(sieved_field) 

print(sieved_field) 

 

from rasterio.features import sieve, shapes 

from shapely.geometry import Polygon,shape 

 

shapes= shapes(sieved_field, connectivity=4) 
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gdf = gpd.GeoDataFrame(shapes) 

gdf.columns = ['geometry', 'value'] 

for index,row in gdf.iterrows(): 

    gdf.loc[index,'geometry']=shape(gdf.loc[index,'geometry']) 

gdf['perimeter']=(gdf['geometry'].length)*10 

gdf['area']=(gdf['geometry'].area)*100 

gdf['FE'] =0.179-0.145*np.log(gdf['perimeter']/gdf['area'])  

print ('Average field efficiency:', gdf["FE"].mean()) 

gdf 

Total utility 4682.448356095204 

Number of subfields: 5 

Sieved switchgrass shapes: 1 

Sieved corn shapes: 1 

Sieved total shapes: 2 

Sieved utility: 4679.349876399971 

[[0 0 0 ... 0 0 0] 

 [0 0 0 ... 0 0 0] 

 [0 0 0 ... 0 0 0] 

 ... 

 [1 1 1 ... 0 0 0] 

 [1 1 1 ... 0 0 0] 

 [1 1 1 ... 0 0 0]] 

Average field efficiency: 0.8179277374061036 

Out[235]: 

 geometry value perimeter area FE 

0 POLYGON ((3 55, 3 57, 2 57, 0 57, 0 100, 5 100... 1.0 1100.0 31600.0 0.665888 

1 POLYGON ((0 0, 0 57, 3 57, 3 55, 6 55, 6 57, 7... 0.0 4140.0 968400.0 0.969968 
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